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Wealth Accumulation in the U.S.: Do Inheritances and

Bequests Play a Significant Role?

1. Introduction

Two of the most basic frameworks which economists use for analyzing national saving

and private wealth accumulation are the life–cycle model (e.g., Modigliani [1986]) and the

so–called altruistic or dynastic model (e.g., Barro [1974] and Becker [1974]). In the first,

households care about their own lives. Since concave utility functions lead them to desire a

relatively level time path of consumption, they save during high income years, as in middle

age, in order to be able to maintain their standard of living through dissaving in periods of

lower income, as during retirement. In the second model, households care about their de-

scendants as well as themselves, and thus they build and exhaust estates and inheritances

to smooth their dynasties’ consumption paths over many generations. The difference be-

tween the two models is of more than pedagogical interest since they can produce strongly

contrasting policy implications. In particular, a generous (and unfunded) social security

system and/or a large national debt tend to displace private wealth accumulation in a life–

cycle framework, raising interest rates, and reducing an economy’s physical capital stock

(or increase its reliance on financial inflows from abroad). In the simplest dynastic model,

on the other hand, these effects are totally absent (e.g., Barro [1974]). The purpose of this

paper is to formulate a model nesting both life–cycle saving and intentional bequests, and

then to attempt to evaluate, with a calibration, the importance of each motive for saving,

and the implications for policy analysis.

In this paper’s model, each household has a finite life span, a life cycle of earnings,

and access to actuarially fair annuities and life insurance. In addition to its own lifetime

consumption, every household cares about the consumption possibilities of its descendants.

Furthermore, there is heterogeneity among households in the form of an exogenous dis-
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tribution of earning abilities within every birth cohort. A household with a high earning

ability may choose to build an estate to share its good luck with its descendants; a house-

hold with an average, or below average, earning ability may decide not to leave a bequest

at all, reasoning that its descendants will, even without an inheritance, have consumption

possibilities comparing favorably with its own. In the end, although all households ac-

cumulate life–cycle savings to finance their retirement, only high earners (or households

with large inheritances) tend to save additional amounts to make transfers to their adult

children.

Just as the two basic saving frameworks have quite different predictions about the

effects of policy, a variety of results are possible from the hybrid model; hence, to identify

which outcomes one might expect to predominate in practice, this paper attempts to cali-

brate parameter values. The analysis focuses on long–run equilibria. The model generates

unique steady–state equilibrium distributions of private net worth and intergenerational

transfers. The two most difficult parameters to calibrate are the weight each household

places on the lifetime utility of its grown children relative to itself, and the degree of

flexibility, in terms of intertemporal substitution and willingness to bear risk, inherent in

household utility functions. This paper sets the intergenerational weight so that steady–

state aggregative private net worth in the model matches U.S. data for 1995, and it sets

the curvature of household utility functions so that the model’s stationary equilibrium dis-

tribution of intergenerational transfers yields Federal estate tax revenues matching data

for the same year.

Section 6 quantitatively compares the steady–state distribution of private net worth

from the calibrated model with the 1995 Survey of Consumer Finances. It is well known

that the U.S. distribution of wealth is very concentrated (e.g., Wolff [1996a]) and that a

pure life–cycle model is unlikely to be able to account for this feature of the data (e.g.,

Huggett [1996]). This paper shows that intentional intergenerational transfers provide a
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plausible explanation for the skewness of the empirical distribution.

Perhaps the model’s most surprising outcome pertains to public policy: under the

“best” calibration, the model suggests that paying down the national debt or funding

the social security system might well have little long–run effect on the economy’s capital

intensity or long–run interest rate. This result is not preordained: the model determines

the extent and the implications of bequest activity endogenously; and, this paper’s analysis

shows theoretically and quantitatively that policy results characteristic of the pure life–

cycle and purely dynastic frameworks are both possible for the hybrid model.

This paper’s organization is as follows. Section 2 provides a brief intuitive discussion

of our model’s potential policy implications. Section 3 presents the equations of the model.

Section 4 discusses several special features of it, including our specification of the estate

tax. Section 5 calibrates parameters. Section 6 presents results: it compares the simulated

distribution of private net worth with data, it derives long–run policy implications con-

sistent with the calibrated parameter values, and it estimates the relative importance for

total private wealth accumulation of life–cycle and bequest–motivated saving. Section 7

concludes.

2. Policy

This section presents an intuitive discussion of possible outcomes for public policy.

This paper does not attempt to explain or follow business cycle phenomena; it exclusively

focuses on long–run, or steady–state, equilibria. Although individual dynasties face uncer-

tainty about the earning–ability realizations of their descendants, there is no aggregative

uncertainty or randomness. In a steady state, the rate of interest and the wage per “effec-

tive” labor unit are constant — simplifying the analysis a great deal. This paper assumes

a closed economy.

Figures 1–3 illustrate the derivation of long–run equilibria for life–cycle, dynastic,
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and hybrid models.1 Other than private saving and consumption, this paper works with

a highly aggregated framework. Let Kt be the economy’s steady–state stock of physical

capital and Lt the labor supply. Assume the latter is inelastic. Omit, for this section,

technological change. Suppose there is a Cobb–Douglas aggregate production function, so

that GDP is Kα ·L1−α, with α ∈ (0, 1). Then with competitive behavior in the production

sector, the ratio of factor shares is constant. Specifically, ifW is the steady–state wage and

r the steady–state interest rate, r ·Kt/[W · Lt] = α/(1− α). Moving r to the right–hand

side of the equation, one has a hyperbolic relation between Kt/[W ·Lt] and r. That is the

“demand for capital” curve in each figure.

Begin with a purely life–cycle model. Suppose each household starts life with two

adults and two minor children. As the adults reach middle age, the children mature and

leave to form their own households — and their parents cease accepting responsibility for

their support. When the adults reach old age, they retire. At each r one can sum the

net worth, in wage units, desired by households of every age. Aggregating over different

age groups, Figure 1’s “supply curve” plots total household net worth, in wage units, for

different long–run interest rates. In the very simple case of logarithmic preferences, two–

period lives, and inelastic labor supply of one unit in youth and 0 in old age, the curve

will be vertical. In general, the supply curve may be rising or falling because increases in

the interest rate lead to complex income and substitution effects, but, in contrast to the

dynastic model below, there is no reason to expect it to be horizontal.

The long–run supply and demand for capital are equal where the curves intersect.

This is the general framework of Diamond [1965], Auerbach and Kotlikoff [1987], Kot-

likoff [1998], and others. Figure 1’s steady–state equilibrium interest rate is r0.

Introduce a national debtD. Private wealth accumulation must be sufficient to finance

the debt as well as the physical capital stock; hence, the steady–state equilibrium interest

1 Tobin [1967] employs a similar diagram.
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rate changes to r1 in Figure 1. If r1 > r0, the steady–state capital intensivity of the

illustrative economy is lower with a positive national debt. Auerbach and Kotlikoff [1987],

for example, obtain long–run comparative static results of this nature.

Figure 2 switches to a dynastic model. Begin with the simplest setup, in which

all dynasties are identical and lack life cycles. Provided market conditions actually lead

households to desire to make bequests, the “supply of financing curve” for our diagram

then has an unambiguous shape: it must be horizontal. Note that if ct is a dynasty’s time–t

consumption, r is the steady–state interest rate, ξ is the dynasty’s intergenerational subject

discount factor, and u(ct) is its current flow of utility, every dynasty’s first–order conditions

for utility maximization imply

u′(ct) = (1 + r) · ξ · u′(ct+1).

In a steady state, ct+1 = ct; hence, the steady–state interest rate depends only on prefer-

ence parameters — i.e.,

(1 + r) · ξ = 1 .

Thinking in terms of private budget constraints, as dynasties smooth their consumption

across time periods, for an aggregative steady state the equilibrium interest rate must be

such that each dynasty desires at each date to consume its labor earnings plus the interest

on its assets. Then the principal of each dynasty’s wealth remains intact, allowing equal

consumption in the future. The principal in question, however, can be of any magnitude,

implying a perfectly flat long–run supply curve in Figure 2.

Consider a national debt D. In Figure 2, without a debt the steady–state equilibrium

interest rate is r0. With a debt, although the supply of financing must exceed the phys-

ical capital stock, the horizontal supply curve can accommodate any degree of difference
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without a change in r. Thus, the long–run equilibrium capital intensivity of production

remains the same regardless of the magnitude of D — a manifestation of Barro’s [1974]

famous “Ricardian neutrality” result.

This paper’s model has both life–cycle saving and intentional intergenerational trans-

fers (bequests and/or inter vivos gifts). Although households have finite life spans and life

cycles of earnings — and thus save in anticipation of retirement, dissave during retirement,

etc. — they also care about their grown children and other descendants. If all households

were identical, all would choose the same bequest amount. Then Figure 2’s supply curve

would reemerge. In fact, U.S. data do not show universal intergenerational transfers (e.g.,

Altonji et al.[1997], Laitner and Ohlsson [2001]). Nor can a model with identical agents

contribute much to explaining the U.S. distribution of wealth. The present paper, in con-

trast, assumes that households differ with respect to earning ability. There is an exogenous

distribution of abilities, which reemerges in every birth cohort. Each household receives a

one–time–only realization from this distribution when it begins work. A household with a

very lucky realization will be a candidate to share its good fortune with its descendants —

in order to smooth dynastic consumption — through gifts and/or bequests. A household

with a low earning ability, in contrast, will expect its descendants to have high consump-

tion relative to its own even without a transfer, and will likely choose to leave nothing.

The model determines a Markov transition function relating the transfer a household re-

ceives from its parents to, conditional on its earning ability, the transfer it desires to leave.

The transition function has a unique stationary distribution. The stationary distribution

determines the long–run cross–sectional distribution of wealth among living households.

The mean net worth accumulations for all surviving households determines the model’s

supply of financing for each prospective steady–state interest rate.

Figure 3 illustrates the hybrid model’s “supply curve.” Suppose curve ab comes from

life–cycle saving alone. If all households have the mean earning ability, and all choose to
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leave positive intergenerational transfers, the curve would be cd (as in Figure 2). With

the hybrid model and heterogeneous earning abilities, the actual curve will resemble EF

(see Section 3). For a given interest rate, estate building will tend to make private wealth

higher than life–cycle saving alone, positioning EF to the right of ab. Precautionary saving

will make wealth accumulation higher than for the certainty dynastic model as well; thus,

cd will bound EF from above. In fact, EF will asymptotically approach cd.2 The latter

implies that EF must be quite flat at its right–hand end.

In terms of policy results, we need to know whether the supply and demand curves of

the hybrid model intersect at a point like F , where supply is very interest elastic, or at a

point like E, where the elasticity more closely resembles a typical life–cycle model. At F ,

policy implications will be like those of Figure 2; at E, they will be like those of Figure 1.

As various simulations below show, either category of outcome is possible; which case one

should expect in practice depends on which parameter values are best in other respects.

3. Theoretical Model

This paper’s theoretical model has three distinctive elements. First, households are

“altruistic” in the sense of caring about the utility of their grown–up descendants. Second,

within each birth cohort there is an exogenous distribution of earning abilities. Third,

households cannot have negative net worth at any point in their lives (perhaps because

bankruptcy laws stop financial institutions from making loans without collateral); similarly,

intergenerational transfers must be nonnegative (so that parents cannot extract old age

support from reluctant children through negative gifts and bequests). These elements lead

to a distribution of intergenerational transfers and, ultimately, a distribution of wealth.

In general, a high–earning–ability parent with a low–earning–ability child will tend to

2 Section 3 presents detailed arguments. Intuitively, at very high wealth levels, dynasties

can self–insure against generational changes in their earnings, leading to results resembling

Figure 2’s model.
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want to make an inter vivos gift and/or bequest, but a low–earning–ability parent with a

high–earning–ability child will not. As stated, this paper focuses exclusively on steady–

state equilibria, and, although individual family lines face earnings uncertainty, the latter

averages out so that there are no aggregative stochastic fluctuations.

The basic framework is similar to Laitner [1992], although in contrast to the latter

this paper incorporates estate taxes, assumes earning abilities are heritable within family

lines, and, in particular, allows limited altruism in the sense that a parent caring about his

grown children may, in his calculations, weight their lifetime utility less heavily than his

own.3 In contrast to Laitner [2001a], the present paper employs 1995 Survey of Consumer

Finances data in its analysis, provides a very detailed model of estate taxes, and assumes

all households have the same preference ordering — rather than some family lines being

altruistic, and some not. Laitner [2001b] omits earnings differences within dynasties. Al-

though the analysis is then much simpler, polar–case policy results resembling Figure 2

are virtually inevitable — rather than being dependent upon calibration outcomes.

Other comparisons to the existing literature are as follows. In contrast to Becker and

Tomes [1979], Loury [1981], and many others, this paper omits special consideration of hu-

man capital. In contrast to Davies [1981], Friedman and Warshawsky [1990], Abel [1985],

Gokhale et al. [2001], and others, the present paper assumes that households purchase actu-

arially fair annuities to offset fully mortality risk; consequently, all bequests in this paper’s

model are intentional. In contrast to Blinder [1974], Altig and Carlstrom [1999], Altig et

al. [2001], and others, in this paper parents calculate their desired bequest thinking about

their descendants’ consumption possibilities — rather than caring about the magnitude

of their transfer alone. In contrast to Bernheim and Bagwell [1988], this paper assumes

3 This paper’s altruism is one–sided: to concentrate on the upper tail of the wealth

distribution, we do not consider children’s support of their elderly parents. More generally,

see, for instance, Laitner [1997].
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perfectly assortative mating — adopting the interpretation of Laitner [1991], who shows

that a model of one–parent households, each having one child, can mimic the outcomes of

a framework in which each set of parents has two children and mating is endogenous. In

contrast to Auerbach and Kotlikoff [1987], Kotlikoff [1998], and others, the present paper

assumes that households supply labor inelastically. Similarly, each surviving household

retires at age 65.

Framework. Time is discrete. The population is stationary. Think of each household as

having a single parent and single offspring (see the reference to assortative mating above).

The parent is age 22 when a household begins. The parent is 26 when his child is born.

When the parent is 48, the child is 22. At that point, the child leaves home to form his own

household. The parent works from age 22 through 64 and then retires. No one lives beyond

age 90. There is no child mortality. In fact, for simplicity there is no parent mortality

until after age 48. The fraction of adults remaining alive at age s is qs.

Labor hours are inelastic. Each adult has an earning ability z, constant throughout

his life, and evident from the moment he starts work. Letting es be the product of ex-

periential human capital and labor hours, and letting g be one plus the annual rate of

labor–augmenting technological progress, an adult of age s and ability z who was born

at time t supplies es · z · gt+s “effective” labor units at age s. The age–profile of es is

exogenously given. This paper focuses on steady–state equilibria in which the wage per

effective labor unit, W , the interest rate, r, the income tax rate, τ , and the social security

tax rate, τ ss, are constant. Markets supply actuarially fair life insurance and annuities.

One plus the net–of–tax interest factor on annuities for an adult of age s is

Rs =
1 + r · (1− τ)
qs+1/qs

. (1)

Our model of z comes from Solon [1992]: if in dynasty j, z′j is the lifetime earning
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ability of the son of a father with ability zj , then

ln(z′j) = ζ · ln(zj) + µ+ ηj , (2)

where ζ ∈ (−1, 1) and µ are parameters, and ηj is random sample from an exogenously

given distribution.

Utility is isoelastic. If an adult has consumption c at age s, his household derives

utility flow

u(c, s) =
cγ

γ
, γ < 1 ,

where u(c, s) = ln(c) in place of the case with γ = 0. If his minor child has consumption

ck, an adult household derives, at age s, an additional utility flow

uk(c, s) =
{
ω1−γ · cγ

γ , if 26 ≤ s < 48,
0, if s ≥ 48.

Consider a parent aged 48. Let t be the year he was born. Let his utility from

remaining lifetime consumption be Uold(a48, z, t), where his earning ability is z, and his

assets for remaining lifetime consumption are a48. Then

Uold(a48, z, t) = max
cs

88∑
s=48

qs · βs−48 · u(cs, s), (3)

subject to: as+1 = Rs−1 · as + es · z · gt+s ·W · (1− τ − τss) + ssb(s, z, t) · (1− τ

2
)− cs,

a89 ≥ 0,
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where u(.) and qs and Rs are as above, β ≥ 0 is the lifetime subjective discount factor, as

stands for the net worth the parent carried to age s, and ssb(s, z, t) specifies social security

benefits at age s.

The utility over ages 22–47 for a parent born in year t is Uyoung(a22, a48, z, t) if he

carries assets a22 into age 22, carries assets a48 out of age 47, and has earning ability z.

Thus,

Uyoung(a22, a48, z, t) = max
cs

47∑
s=22

qs · βs−22 · [u(cs, s) + uk(cks , s)], (4)

subject to: as+1 = Rs−1 · as + es · z · gt+s ·W · (1− τ − τss)− cs − cks ,

as ≥ 0 all s = 22, ..., 48.

As stated, the model assumes bankruptcy laws prevent households from borrowing without

collateral, giving us the last inequality constraint in (4). For the sake of computational

expedience, on the other hand, this paper assumes that such constraints do not bind for

older households, making them superfluous in (3).

To incorporate altruism, let V young(a22, z, t) be the total utility of a 22–year old al-

truistic household carrying initial assets a to age 22, having earning ability z, and having

birth date t — where “total utility” combines utility from lifetime consumption with em-

pathetic utility from the consumption of one’s descendants. Let V old(a48, z, z
′, t) be the

total utility of a 48–year old altruistic household which has learned that its grown child

has earning ability z′. Then letting E[.] be the expected value operator, and letting ξ > 0

be the intergenerational subjective discount factor, we have a pair of Bellman equations
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V young(a22, z, t) = max
a48≥0

{Uyoung(a22, a48, z, t) + β26 ·Ez′|z [V old(a48, z, z
′, t)]},

V old(a48, z, z
′, t) = max

b48≥0
{Uold(a48 − b48, z, t) + ξ · V young(T (b48, t, z′), z′, t+ 26)},

where b48 is the parent’s intergenerational transfer, and T (b48, t, z′) is the net–of–transfer–

tax inheritance of the child (see Section 4). As stated, we require b48 ≥ 0. Thus, parents

cannot compel reverse transfers from their children. To preserve homotheticity, we require

that estate tax brackets, deductions, and credits grow with factor g over time — and that

the same is true for social security benefits (see below).

Then with isoelastic utility, one can deduce

Uyoung(a22, a48, z, t) = gγ·t · Uyoung(a22/g
t, a48/g

t, z, 0),

Uold(a48, z, t) = gγ·t · Uold(a48/g
t, z, 0),

V young(a22, z, t) = gγ·t · V young(a22/g
t, z, 0),

V old(a48, z, z
′, t) = gγ·t · V old(a48/g

t, z, z′, 0).

Substituting a for a22/g
t, a′ for a48/g

t, and b for b48/gt, the Bellman equations become

V young(a, z, 0) = max
a′≥0

{Uyoung(a, a′, z, 0) + β26 · Ez′|z [V old(a′, z, z′, 0)]}, (5)
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V old(a, z, z′, 0) = max
b≥0

{Uold(a− b, z, 0) + ξ · gγ·26 · V young(T (b/g26, 0, z′), z′, 0)}. (6)

Suppose maximization yields φ(a22, s, t, z) as the net worth of a family of age s =

22, 23, ..., 47, ability z, birth date t, and initial net worth a22; ψ(a22, t, z, z
′) as its gross of

tax intergenerational transfer when its child has earning ability z′; and, Φ(a22, s, t, z, z
′)

as its net worth at age s = 48, ..., 90. Then homotheticity implies

φ(a22, s, t, z) = gt · φ(a22/g
t, s, 0, z) , (7)

ψ(a22, t, z, z
′) = gt · ψ(a22/g

t, 0, z, z′) , (8)

Φ(a22, s, t, z, z
′) = gt ·Φ(a22/g

t, s, 0, z, z′) . (9)

All families have the same ω, β, and ξ.

There is an aggregate production function

Qt = [Kt]α · [Et]1−α, α ∈ (0, 1), (10)

where Qt is GDP, Kt is the aggregate stock of physical capital, and Et is the effective labor

force. The model omits government capital, though Kt includes houses and consumer

durables. Kt depreciates at rate δ ∈ (0, 1). Normalizing the size of the time–0 birth cohort

to 1 (so that every birth cohort has size 1), and employing the law of large numbers,

Et =
65∑

s=22

gt · qs · es. (11)
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The price of output is always 1. Perfect competition implies

Wt = (1− α) · Qt

Et
and rt = α · Qt

Kt
− δ. (12)

Government issues Dt one–period bonds with price 1 at time t. Assume

Dt/Qt = constant. (13)

Let SSBt be aggregate social security benefits. The social security system is unfunded,

with

SSBt = τ ss ·Wt ·Et. (14)

If Gt is government spending on goods and services, assume

Gt/Qt = constant. (15)

Leaving out the social security system, in which benefits and taxes contemporaneously

balance, the government budget constraint is

Gt+rt·Dt = τ ·[Wt·Et+rt·Kt+rt·Dt]+Dt+1−Dt+
∫ ∞

0

∫ ∞

0

[b−T (b, t, z′)]·F t(db, dz′) , (16)

where F t(b, z′) is the joint distribution function for parental transfers b to households of

age 22 at time t and earning ability z′ — so that the last term is estate–tax revenues (recall

the normalization on cohort populations). This paper assumes public–good consumption

does not affect marginal rates of substitution for private consumption.

Households finance all of the physical capital stock and government debt. Let H(z′ | z)
be the distribution function for child earning ability z′ conditional on parent ability z (recall
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the Solon model). Then when NWt is the aggregate net worth held which the household

sector carries from time t to t+1, the economy’s supply and demand for financing balance,

using the law of large numbers, if and only if

Kt+1 +Dt+1

Et
=
NWt

Et
≡

∑47
s=22 qs ·

∫ ∞
0

∫ ∞
0
φ(T (b, t− s, z), s, t− s, z)] · F t−s(db, dz)

Et

+
∑87

s=48 qs ·
∫ ∞
0

∫ ∞
0

∫ ∞
0

Φ(T (b, t− s), s, t− s, z, z′) ·H(dz′ | z) · F t−s(db, dz)
Et

. (17)

In “equilibrium” all households maximize their utility and (1)–(17) hold. A “steady–

state equilibrium” (SSE) is an equilibrium in which rt and Wt are constant all t; in which

Q, K, and E grow geometrically with factor g; and, in which the time–t distribution of

pairs (b/gt, z) is stationary. The last implies

F t(b, z) = F 0(b/gt, z) ≡ F (b/gt, z) all b, z, t . (18)

This paper focuses exclusively on steady–state equilibria.

Existence and Computation of Equilibrium. We can amend Propositions 1–3 of Lait-

ner [1992] in a straightforward manner to establish the existence of a steady–state equilib-

rium.

The propositions imply that we can compute a steady–state equilibrium as follows.

Perfectly competitive behavior on the part of firms together with our aggregate production

function yield

(r + δ) ·Kt

W · Et
=

α

1− α ,

where Kt/Et is stationary in a steady state. Household wealth finances the physical capital

stock and the government debt. Combining the two uses of credit,
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Kt+1 +Dt+1

W · Et
= g · [ α

1− α · 1
r + δ

+
Dt

W · Et
] = g · [ α

1− α · 1
r + δ

+
1

1− α · Dt

Qt
] . (19)

Line (13) makes Dt/Qt a parameter; thus, (19) yields the “demand” for financing curve in

Figure 3.

Define r̄ from

(1 + r̄)26 · (1− τ beq) · ξ · β26 · g(γ−1)·26 = 1, (20)

where τ beq is the maximal marginal tax rate on bequests. Fix any r with r · (1− τ) < r̄,
and fix W = 1. We can solve our Bellman equations using successive approximations:

set V old,1(.) = 0; substitute this for V old(.) on the right–hand side of (5), and solve for

V young,1(.); substitute the latter on the right–hand side of (6), and solve for V old,2(.); etc.

This yields convergence at a geometric rate: as j → ∞,

V young,j(.) → V young(.) and V old,j(.) → V old(.) .

This paper’s grid size for numerical calculations is 250 for net worth and 25 for earnings.

The grids are evenly spaced in logarithms — except for even division in natural numbers

for the lowest wealth values.

Turning to the distribution of inheritances and wealth, for a dynastic parent household

born at t, policy function (8) yields

a′22/g
t+26 = T (ψ(a22/g

t, 0, z, z′)/g26, 0, z′) , (21)

where a′22 is initial net worth in the dynasty’s next generation. Line (2) implies

z′ = [z]ζ · eµ · eη, (22)
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where η is taken to have a known distribution. Together (21)–(22) determine a Markov

process from points (a22/g
t, z) to Borel sets of points (a′22/g

t+26, z′) one generation later.

We assume the distribution of η has bounded support. Then as in Laitner [1992], there

are bounded intervals A and Z with A×Z an invariant set for the Markov process, and

there is a unique stationary distribution for the process in this set. In terms of distribution

functions F t : A × Z → [0, 1] — recall (18), the Markov process induces a mapping, say,

J with

F t+26 = J(F t) , (23)

and iterating (23) from any starting distribution on A×Z yields convergence to the unique

stationary distribution. Again, our numerical grid in practice is 250 × 25. The station-

ary distribution and lifetime behavior yield expected net worth per household normalized

by average current earnings. Using the law of large numbers, we treat the latter ratio,

NWt/(W · Et), as nonstochastic.4 This generates the supply curve of Figure 3.

Laitner’s [1992] propositions show NWt/(W · Et) varies continuously with r and has

a horizontal asymptote at r = r̄/(1 − τ), as shown in the figure; thus, we must have

an intersection of the demand and the supply curves. An intersection determines an

equilibrium for the model. There are no steady states above the asymptote, because

household net worth is infinite for r ≥ r̄/(1− τ).

4. Timing and Taxes

Dynamic programming determines a given dynasty’s desired transfer, say, b48 =

ψ(a22, t, z, z
′), as in (8). If the heir faces binding liquidity constraints (see (4)), the transfer

4 Note that assuming W = 1 above is not restrictive: with homothetic preferences, a

differ w raises the numerator and denominator of the steady–state ratio NWt/(W ·Et) in

the same proportion.
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must be made promptly — delays or impediments will invalidate our Bellman equations.

If liquidity constraints do not bind, or if a fraction of b48 suffices to lift them, the timing

of remaining transfers is, in mathematical terms, indeterminate. In terms of behavior,

a parent is then indifferent between completing his transfer at age 48, leaving a fraction

of his transfer for his estate at death, making a sequence of gifts over many years, etc.

This section considers the timing of transfers in more detail, and presents the resolution of

indeterminacy which our computations employ. Then it turns to the related issue of the

specification of estate taxes.

Timing. In practice, conflicting forces influence the age at which a parent makes his

intergenerational transfer. On the one hand, taxes encourage early transfers — Section 5

notes that tax rates on inter vivos gifts are lower than those on estates. Further, since

tax rates are progressive, an early–in–life transfer faces lower taxes than a late–in–life sum

with the same present value. On the other hand, a wealthy donor may feel that he can

earn a higher rate of return on financial investments than his heirs (e.g., Poterba [1998]);

a parent may value wealth for its own sake (e.g., Kurz [1968]) or as a means of securing

his children’s attentions (e.g., Bernheim et al. [1985]); or, a parent may want to delay in

transferring his estate to protect himself against possible strategic behavior on the part of

his children (e.g., a parent making a prompt transfer might find that his child consumes the

sum quickly and then asks for more help — see Laitner [1997]). Although presumably many

wealthy decedents make inter vivos transfers, data show that taxable estates empirically

are an order of magnitude larger than taxable gifts (e.g., Pechman [1987,tab. 8.2] and

Poterba [1998,tab.4]).

In light of the evidence, this paper’s model presumes that parents strongly prefer to

make their intergenerational transfers at death. Specifically, our computations assume

that parents who want to make intergenerational transfers to their children do so through

inter vivos gifts when liquidity constraints bind on the children, but that once a parent
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has transferred enough to (just) lift his child’s constraints, the parent saves his remaining

transfers for his bequest. We make the following additional assumption purely for the sake

of computational simplicity: if a parent remains alive at age 74 (when his child is 48), he

makes his “bequest” (i.e., his final transfer) then.5

Taxes. We must specify Federal gift and estate taxes in a way consistent with the timing

above.6

There are many opportunities for avoiding taxes which are only available to living

donors. A husband and wife, for instance, can each annually transfer a $10,000 gift to each

child, and to the spouse of each child, without incurring any tax liability. Policing lifetime

gifts is extremely difficult; thus, parents presumably can shelter their grown children,

provide facilities and resources for joint vacations, etc., without, in practice, reporting to

the IRS. Transfer pricing provides other options. Suppose, for instance, that a father’s

labor has annual marginal revenue product of $10 million and his son $1 million. Then

the father might agree to work for $8 million per year with an implicit understanding that

his son, employed at the same firm, would earn $3 million.

With such a perspective, this paper assumes zero tax liability on inter vivos gifts.

For a net–of–tax transfer x, our analysis of timing determines the present value of inter

vivos gifts, say, x1, and the actuarial present value of bequests at death, x2. (By definition,

x1+x2 = x.) For a current–value bequest X2, we can determine the current gross bequest,

say, Y2, consistent with Section 5’s “effective” 1995 U.S. tax system. At parent age 48, let

5 The reason for the age limit of 74 for transfers is that after that time the grandchild’s

earning ability is revealed. While the additional information would affect the parent’s

planning in theory, in practice it seems unlikely that surviving 75 year olds alter their

consumption appreciably on the basis of their grandchildren’s success in the labor market.
6 This paper ignores state gift, estate, and inheritance taxes beyond the level of the

allowable federal credit for state taxes.
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the present actuarial value of desired gross bequests Y2 for all possible ages of death be y2.

Then for gross transfer x1 + y2 at parent age 48, the tax liability is y2 − x2. In particular,

for a parent age 48 at time 0, last section’s tax function is

T (x1 + y2, 0, z′) = y2 − x2. (24)

Since our calculations for y2 depend on the way x is split between gifts and bequests, which,

in turn, depends on z′, the latter must be an argument of tax function T (.). Note also

that our treatment assumes parents deduce their estate–tax liability realizing that they

will apportion their net transfer in accordance with our timing assumption, and that the

latter itself, under our treatment, is insensitive to the nominal tax rate. In other words,

this paper resorts to a “model” of the very complex Federal tax on gifts and estates.

In our computations, we assume a tax function, say, T 0(.), stored as a 250×25 matrix

over Section 3’s grid for A × Z; we solve the Bellman equation for V young(.) and V old(.)

conditional on T 0(.); deducing the division of possible net transfers between gifts and

estates on the basis of these value functions, we construct a new tax function, say, T 1(.);

we solve the Bellman equations for V young(.) and V old(.) conditional on T 1(.); repeat our

steps to derive T 2(.); etc. Provided we have convergence to a fixed point T (b, 0, z′), i.e.,

T j(b, 0, z′) → T (b, 0, z′) all (b, z′), (25)

T (.) is a usable tax function. (In the computations below, convergence is never a problem.)

5. Calibration

Calibrating the hybrid model requires that we (i) characterize the distribution of

earning abilities, (ii) characterize the Federal estate tax, and (iii) set values for parameters

α, δ, ω, τ ss, g, τ , β, ξ, and γ. We use 1995 data. This section first discusses total private

net worth in the U.S. economy. Then it turns to (i)–(iii).
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Total Private Net Worth. Our aggregative private net worth figure comes from the 1995

Survey of Consumer Finances.7 The survey provides a detailed set of asset and debt

measurements for 4299 households, including a random “area probability” sample of 2781

and a so–called “list” sample of 1518. The “list sample,” which comes from a tax file of

wealthy households, makes this survey uniquely comprehensive and interesting. According

to the survey, 1995 aggregate household net worth was $21.1 tril.

Two defects of the survey are that it omits most private pension wealth and that it

omits consumer durables other than automobiles, boats, and luxury items such as jewelry,

furs, and antiques. Park [2001] shows the value of private pensions was $5.5 tril., of which

the survey includes only $1.4 tril. Herman [2000, tab.13] implies the aggregate value of

remaining categories of consumer durables was $1.2 tril. Adding 21.1 + (5.5-1.4) + 1.2,

we have $26.4 tril.8

We make two additional adjustments. First, pension, as well as IRA and Keogh,

accounts have a future income tax liability on their principal. The calibrations below

assume a proportional income tax rate of 23.4%, implying an aggregative tax liability on

these accounts of $1.6 tril. Second, many financial assets have an implicit tax liability for

accrued, but not realized, capital gains. Poterba and Weisbenner [2000, table 4] allow us

to compute a percentage of net worth in other real estate, business, other business, and

directly held stock for households in six net–worth categories (i.e., 0–250K, 250–500K, 500–

1000K, 1–5M, 5–10M, 10M+), and then to estimate the share of unrealized capital gains

per cell. (We omit capital gains on own residence, since most of these are tax exempt.)

We use the same 23.4% rate as before.9 The aggregate implicit tax liability is $1.1 tril. In

the end, our total private net worth figure for 1995 is $23.7 tril.

7 The Internet site is www.federalreserve.gov/pubs/oss/oss2/95/scf95home.html.
8 The U.S. Flow of Funds show 1995 net worth for the household sector and non–profit

institutions combined of $27.4 tril.
9 Unrealized capital gains in estates receive special tax treatment in practice, an issue

21

mtromble
21



The Distribution of Earnings. The 1995 SCF collects data on household earnings for

1994. The survey measures wages and salaries, survey variable X5702, and business in-

come, variable X5704. Since our theoretical model assumes a constant returns to scale

aggregate production function with capital’s share α = .3466, we define a “household’s

earnings” as X5702 + (1 − α) · X5704. Table 1, column 1, summarizes the distribution

of this constructed variable. This subsection processes it further and uses it to develop a

parametric description of the distribution of earnings.

Table 1, column 2, adjusts for marital status. Our model assumes all adults are

married. Of course, that is not true in the data. Thus, for conformity with the model, we

double the SCF earnings of singles, and halve their weight — in effect marrying singles to

spouses with identical earning ability.

Our theoretical model assumes that each working–age household inelastically supplies

labor and earns at time t

Wt · es · zj ,

where Wt is the wage; es is age–s human capital from experience; and, zj is household j’s

life–long earning ability. However, we assume that the SCF data include an independent,

family specific, yearly shock εjt, so that earnings in the survey measure

Wt · es · zj · εjt . (26)

(Our theoretical analysis ignores the last shock — implicitly assuming that households can

effectively self–insure against such short–run fluctuations.) Using the data, we calculate

mean earnings for 5–year age groups (i.e., 20–24, 25–29, etc.); impute the mean earnings

to the median age for the group; and, from the means, linearly interpolate Wt · es all

to which we return below.
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ages s. Dividing each household’s earnings by the interpolated value, Wt · es, yields our

observations of zj · εjt. Our theoretical model requires an earnings distribution with a

compact support; hence, we drop households with zj · εjt below .2 or above 10,000. For

consistency with the model, we also drop observations having s < 22 or s > 65. Table 1,

column 3, summarizes the normalized, age–restricted observations.

Estimates from panel data suggest roughly equal variances for ln(zj) and ln(εjt) (see,

for example, King and Dicks–Mireaux [1982]). As the variance of ln(zj · εjt) for column 2’s

data is .4187, this paper assumes

ln(εjt) ∼ normal(0, σ2
ε ) with σ2

ε = .2094. (27)

For intergenerational earning ability equation (2), this paper adopts Solon’s [1992] estimate

ζ = .45. To allow thick tails for the earnings distribution, we assume a t distribution for

η, the latter being a normal(0, σ2
η) random variable divided by an independent χ2 variable

with n degrees of freedom. For n→ ∞, η is lognormal. Otherwise, its density is

fη(η; ση, n) =
Γ(n+1

2 )
ση · Γ(n

2 ) ·
√
π · n · [ 1

(1 + ( η
ση

)2/n)
](n+1)/2. (28)

We proceed as follows. Fix an n. Truncate the support of η to

[(1− ζ) · (ln(.2)− µ), (1− ζ) · (ln(10000)− µ)].

We numerically approximate the stationary density function for z — using (2) and (28).

Choose (µ, ση) so that the mean of the approximate density is 1 and the variance of ln(z)

is one–half the variance of the log of the observations from Table 1, column 3. Then derive

summary statistics for the product of z and the independent lognormal ε specified in (27).

Table 1, column 4, presents outcomes for n = 100 — for which z is virtually lognormal.
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Table 1, column 5, presents results for n = 3.83, this paper’s choice of n. The latter

minimizes the χ2 test statistic derived from the frequencies implicit in column 3 and the

new summary.10 For this n, the calculations above imply µ = −.1020 and ση = .3032.

Table 1, column 5, provides a much closer match with the data than column 4.

Federal Gift and Estate Taxes. Federal gift and estate tax revenues play a major role in

the calibrations below.

Table 2, column 1, lists 1995 Federal estate tax rates.11 The Federal gift tax uses

the same schedule; however, the gift tax applies only to net–of–tax amounts. In 1995,

each taxpayer had a lifetime credit of $192,800 for combined gift and estate taxes; there

were unlimited marital and charitable deductions; and, each year a taxpayer could exclude

any number of gifts of $10,000 or less to separate individuals. Two important points are

(i) despite the high rates in Table 3, 1995 aggregate gift and estate tax collections were

only $17.8 billion (a figure which sums $14.8 billion of federal revenues — see the Economic

Report of the President [1999] — with $3.0 billion credited for state death duties — see

Eller [1997]), and (ii) although gift tax rates are lower, gift tax collections are typically an

order of magnitude less than revenues from estate taxes. Because of the second point, our

model does not include a gift tax — as explained in Section 4. Here we attempt to derive

for our numerical analysis a specification of the Federal estate tax which is consistent with

low collections. We assume that since the Federal tax falls on large estates, tax avoidance

is nontrivial. In particular, we assume that because of avoidance, the rates of Table 2,

10 For a minimum chi squared estimator, the chi square statistic is 11.7, with 9 degrees

of freedom. The p–value is .23. Note, however, that strictly speaking the test statistic

requires a random sample, rather than a nonrandom and weighted sample.
11 In practice, there was a bracket above $10 million with a marginal rate .60, and a

higher bracket returning to marginal rate .55 — these arising from the phase–out of lower

infra–marginal rates. This paper ignores the .60 bracket.
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column 1, fall on only a fraction θf of each nominally taxable dollar of estate.

The upper section of Table 3 presents 1995 tax data from Eller [1997] on large estates

(gross estate less debts), marital deductions, and charitable deductions. Consider single

households in the SCF. If NWj is SCF net worth for household j, if ωj is the household’s

SCF sample weight, and if pj is the probability of death this year for the household head’s

age and sex from a standard mortality table, one can construct analogues of the variables

of columns 1, 2, 4, and 6 at the top of Table 3 from pj · ωj times, respectively,

1, NWj · [θc + θf · (1− θc)], 0, NWj · θc, (29)

where θc is the fraction of the estate going to charity and θf is, as stated, the fraction of

taxable wealth actually reported on a decedent’s estate tax form. We assume

θc =
{
θc,low, for NWj < 10, 000, 000,
θc,high, otherwise,

Continuing with the SCF data, we treat “partners” as two singles, each having half a

household’s net worth. Married couples are more complicated. If θm is the fraction of

the first decedent’s estate transferred (tax free) to the surviving spouse, and if p̄j is the

mortality rate for the head’s spouse, the four figures corresponding to (29) are (pj + p̄j +

pj · p̄j) · ωj times

1,
NWj

2
· [θm + θc + θf · (1− θm − θc)],

NWt

2
· θm,

NWt

2
· θc (30)

for a first decedent’s estate. To cover the chance that both spouses die the same year, one

must add pj · p̄j · ωj times

1,
NWj

2
· (1 + θm) · [θc + θf · (1− θc)], 0,

NWj

2
· (1 + θm) · θc . (31)
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to pick up the second spouse’s estate. Using all of the households in the 1995 SCF, we

choose our θ’s to minimize the sum of squared deviations between columns 1, 2, 4, and

6, for rows 1–6, of the upper and lower segments of Table 3. The minimizing values are

θc,low = .04, θc,high = .22, θm = .40, and θf = .58.

The estimated value of θf implies that “estate planning” reduces a taxable estate

about 42%. This seems credible in light of the many strategies available for avoiding

estate taxes (e.g., Schmalbeck [2000]). Applying Table 2’s tax rates to the implied flow

of taxable estates from the SCF, aggregate annual revenues are $18.7 billion. In contrast,

imposing θf = 1, and repeating the steps above, implied 1995 Federal estate tax collections

are $42.9 billion — a figure in line, for instance, with Wolff’s [1996b] calculations from the

1992 SCF — but clearly contrary to empirical evidence.

Charitable foundations deserve special attention. Wealthy households consume, in

part, through charitable gifts, and a parent can transfer power over donations to his chil-

dren by creating a private foundation (which his descendants presumably can control).

Contributions to such foundations are tax free. Eller’s [1997] data (from 1992) show that

donations to private foundations constitute 28.8% of charitable contributions in estates.

Though our model’s estates do not include general charitable contributions or transfers to

spouses, they do include donations to private foundations.

This paper computes “effective” estate tax rates as follows. For an empirical transfer

of x which parents direct to their children, the reported taxable estate is x·(1−.288·θc)·θf .

The tax rates of Table 2, column 1, and the uniform credit generate a tax assessment on

the latter sum. For the median amount in each of Table 2’s brackets, we compute the

marginal tax rate taking avoidance into account. Table 2, column 2, presents the rates.

Table 2, column 3, presents the (rounded) rates our simulations actually employ. The

minimum gross estate for any tax due is $1,038,000; the minimum in the simulations is

$1,000,000.
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Finally, an empirical estate escapes income taxation on capital gains unrealized during

the decedent’s life: an executor raises all assets to market value before calculating the estate

tax liability, but all capital gains are exempt from income taxation. We compute the capital

gains tax liability using Poterba and Weisbenner [2000], as above, and a proportional rate

of .234. Table 2, column 4, presents marginal estate tax rates corrected both as in column 2

and for the saving in capital gain taxes. Column 5 presents the rounded rates which the

simulations use.

In the end, households in our simulations use the “perceived marginal tax rates” of

Table 2, column 5, to guide their behavior. Each simulation simultaneously computes

government estate–tax revenues using the “effective marginal tax rate” of Table 2, col-

umn 3. Our calibrations compare the government revenues with the $18.7 billion/year

derived above from column 3 and the 1995 SCF.12

Ratios and parameters. Letting 1995 National Income and Product Account wages and

salaries be c1, proprietor’s income be c2, wages and salaries from proprietorships be c3,

national income be c4, and depreciation be c5, labor’s share of output, 1− α, solves

1− α =
c1 − c3

c4 + c5 − c2 − c3 .

This generates our estimate α = .3466.

Subtracting the privately held national debt from our SCF measure of total private

net worth yields our measure of Kt. With Qt the 1995 GDP, we have Kt/Qt = 2.7573.

Auerbach and Kotlikoff’s [1987] interest rate is .067, and Cooley and Prescott’s [1995] is

.072. Setting ours to .069, we then need δ = .0567.

12 Our figure for aggregate 1995 U.S. wealth imputed private pensions and consumer

durables. Since pensions are often annuitized, and consumer durables often have little

resale value, we ignore both in our estate–tax computations here.
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There is no population growth in our simulations. We simply set our technological

progress factor g to 1.01.

We set a proportional tax τ ss on earnings up to the 1995 social security limit ($61,200)

so that taxes exactly cover 1995 retirement benefits ($287.0 bil.). Within each birth cohort,

social security benefits are progressive: for each cohort, we allocate benefits across our

earning groups according to the benefit formula and maximum in U.S. Social Security

Administration [1998]. Over time, both the tax limit and the brackets for the benefit

formula rise with factor g.

Using 1995 Federal, state, and local expenditures on goods and services, Gt/(w ·Et) =

.2838. Taking the 1995 ratio of Federal debt to 1 − α times GDP, Dt/(w · Et) = .6814.

The empirical ratio (Kt +Dt)/(W · Et) is 4.9015 for 1995.

We assume no child mortality and no adult mortality until age 48. Table 4 presents

our figures for qs, which reflect average 1995 mortality rates for U.S. men and women.

The implied average life span is 77 years. Table 4, column 2, presents our age profile

for experiential human capital, taken from 1995 SCF household earnings (as described

above).13 The figures correspond to W · es in the model.

Mariger [1986] estimates that children consume 30% as much as adults. Attanasio

and Browning [1995,p.1122] suggest 58 percent. Gokhale et al. [2001] use 40 percent. We

set ω = .50.

Lifetime first–order conditions for adult consumption at different ages imply

qs · [cs]γ−1 ≥ qs+1β ·Rs · [cs+1]γ−1 ⇐⇒ [β · (1 + r · (1− τ))]1/(1−γ) · cs ≤ cs+1,

with equality when the nonnegativity constraint on household net worth does not bind.

13 In order to convert take home pay to total compensation, we multiply SCF wages and

salaries by 17.49/12.58 — see Statistical Abstract of the United States [1997, table 676].
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Tables from the 1984–97 U.S. Consumer Expenditure Survey present consumption data

for households of different ages.14 We adjust the treatment of service flows from owner

occupied houses.15 Then we compute the average ratio of consumption at age s + 1 to

that at age s for households of ages 30–39 — attempting to avoid ages at which liquidity

constraints bind, at which children leave home, and at which retirement begins. The

average ratio is 1.0257; hence, we require

[β · (1 + r · (1− τ))]1/(1−γ) = 1.0257. (32)

Table 5 summarizes our calibrations of α, δ, ω, τ ss, and g.

We are left with τ , β, γ, and ξ. We adjust these until for a given simulation (i) the

government budget constraint holds, (ii) consumption growth condition (32) holds for

unconstrained ages, (iii) aggregate estate tax collections (roughly) equal $18.7 bil. from

our analysis above, and (iv) the empirical capital stock plus government debt to earnings

ratio matches the right–hand side of (17). (Note that since the empirical ratio capital and

debt to earnings and our aggregate production function alone determine the interest rate,

in all calibrations r = .069.) It is easy to compute τ from (16) given our assumptions and

requirement that estate–tax revenues equal their empirical counterpart. Given τ , it is also

simple to compute β from (32).

For a selection of values of γ, we then iterate on ξ until the right–hand sides of (17)

and (19) agree (recall note 4). We expect a higher ξ to lead to higher intergenerational

transfers and bequest–motivated saving; thus, a higher ξ should shift the supply curve

14 See http://stats.bls.gov.csxhome.htm.
15 The adjustment is as follows. We subtract mortgage payments and repairs to owner

occupied houses and scale remaining consumption to NIPA levels for aggregate consump-

tion less housing flows. Then we distribute NIPA housing service flows across ages using

proportional housing values given in the survey. See Laitner [2001b].
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of Figure 3 to the right. The role of the isoelastic exponent γ is more subtle. When

γ is low, agents are rigid in their tastes — they manifest a low intertemporal elasticity

of substitution, and a high degree of relative risk aversion. When γ is near 1, they are

flexible. In terms of simulations, when γ is low, intergenerational transfers will tend to be

high, as households build dynastic wealth to insure their descendants against bad earnings

realizations. Thus, a lower γ will imply a supply curve further to the right in Figure 3.

This, in turn, implies that parameter combinations successful at matching the empirical

aggregate net worth and interest rate will have a monotone relationship: with a low γ, a

relatively low ξ will generate sufficient wealth to match the data; when γ is high, ξ will

have to be high as well.

Different (γ, ξ) combinations will lead to different equilibrium distributions of inter-

generational transfers. Consider a calibration with a low γ and low ξ. The low ξ means

many households will choose not to make intergenerational transfers; however, the low

γ makes households uncomfortable with risk and intergenerational differences, which will

impel very high earners to leave substantial estates despite ξ. In the end, estate building

will tend to be very concentrated (implying the same for the distribution of wealth). For

parameter combinations with high γ and high ξ, estate–motivated saving will tend to be

more widespread and less concentrated. Since the Federal estate tax is progressive, a more

concentrated distribution of estates implies higher estate–tax revenues; thus, estate–tax

revenues will tend to be higher with low (γ, ξ) combinations.

Table 6 presents simulations for different values of γ. As stated, in each column τ

adjusts for the government budget constraint, β for (32), and ξ to equate the right–hand

sides of (17) and (19). The pattern we anticipated holds: a low γ requires a low ξ, and

it yields high estate–tax revenues. The best match with empirical estate–tax revenues is

γ = .7.

The value of β in Table 6, column 4, is consistent with existing work (e.g., Cooley
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and Prescott [1995]). The estimate ξ = .82 implies parents value the utility of their grown

children almost as much as their own.16 The value γ = .70 is less usual: conventional simu-

lations often employ γ = −4 to 0 (e.g., Davies [1982] and Auerbach and Kotlikoff [1987]).17

On the other hand, Browning et al.’s [1999] survey finds several estimates greater than 1.

6. Results

Questions of particular interest are: (a) How well does the simulated distribution of

wealth in column 4 of Table 8 match U.S. data? (b) Does the best calibration imply an

equilibrium in Figure 3 resembling E or F? (c) What fraction of steady–state private net

worth in the model is due to life–cycle saving?

Distribution of Net Worth. For comparison, Table 7 presents summary statistics on the

U.S. distribution of net worth from the 1995 Survey of Consumer Finances. Column 1

presents unadjusted private net worth data. As many commentators have noted, the

distribution’s upper tail is highly concentrated: the top 1% of wealth holders have 35% of

the household sector’s net worth.

Table 1’s remaining columns process the survey data with steps corresponding to those

Section 5 applies to aggregate net worth. Column 2 incorporates missing private pension

net worth, now at the level of individual households.18 Since pension wealth is more equally

distributed than, say, financial net worth, column 2 displays less concentration than col-

umn 1. The share of the top 1%, for example, falls from 34.9% to about 29.4%. Column 3

imputes consumer durables omitted from the survey. The imputations are based on the

regression equation in Wolff [1987,p.254].19 As one might expect, concentration declines

16 Using a somewhat different model, Nishiyama (2000, table 8–9) derives estimates .51

and .58 for an analogous parameter.
17 Gokhale et al. [2001] uses γ = −∞. See also Hall [1988].
18 We use the survey’s numerous questions about pension provisions of current and

previous jobs — see Park [2001].
19 Wolff’s equation itself is based on a 1969 survey. The independent variables are
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further, with the share of the top 1% falling to 28.2%. Column 4 corrects private pension

and IRA amounts for income tax liability. As in Section 5, we assume a proportional

income tax with rate .234. Similarly, we use Poterba and Weisbenner’s estimates of un-

realized capital gains by wealth level — recall Section 5 — to impute each household’s

implicit capital gains tax liability. The two tax adjustments roughly cancel one another.

Table 7, column 5, limits the sample to households aged 22–73, as our model assumes that

households begin with 22 year old adults and that parents complete all intergenerational

transfers before age 74.

Agreement between our best simulation, Table 6, column 4, and the data of Table 7,

column 5, seems quite good. The Gini coefficient for the data is .73; for the simulation

it is .75. The share of wealth held by the top 1% in the data is 27.7 percent; for the

simulation, it is 25.0 percent. The shares of the top 5% and 10% in the data are 47.5

and 60.0 percent, respectively; in the simulation, they are 43.4 and 55.9 percent. For

comparison, in Table 1, column 3, the Gini of the earnings distribution is .40, and the

shares of the top 1, 5, and 10% are 11.1, 23.0, and 32.5 percent, respectively. Holding

the interest rate at our 6.9%/year level, we can impose ξ = 0 and simulate the stationary

distribution of private net worth from life–cycle saving alone. The shares of the top 1, 5,

and 10% are 16.3, 33.2, and 49.2 percent, respectively, and the Gini is .73. Thus, as in

Huggett [1996], life–cycle saving alone fails to explain the upper tail of the U.S. wealth

distribution. Evidently the hybrid model can do much better.

The model’s ability to match the high empirical concentration of the U.S. distri-

income, income squared, age, marital status, dummy for female head, and dummy for

urban resident. We drop the last, and we use earnings in place of income. (In fact, letting

earn* be the vertex of the parabola, we use min{earn, earn∗} as our income argument.)

We make a proportional adjustment so that the aggregate equals our $1.2 tril. total for

omitted durables in Section 5.
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bution of net worth distinguishes it from earlier attempts such as Blinder [1974] and

Laitner [2001a]. Blinder has a much different setup, with intentional, but nonaltruis-

tic, bequests — i.e., “joy of giving” bequests. Davies [1982] and Laitner [2001a] both allow

preference differences among households, the latter being correlated with earning abilities

in Davies. Our model’s performance in this respect is not better than Gokhale et al. [2001].

Indeed, the approaches represent possible alternatives: Gokhale et al.’s bequests are un-

intentional (there being no private annuities — despite highly risk averse agents); ours, in

contrast, are intentional and “altruistic.”20

A weakness of our best simulation is its inability to account for the net worth of

the lowest 50% of households: the simulated share of net worth for the bottom 50% of

households is .08 percent; the actual share is 6.3 percent. The discrepancy seems due

to young households. According to the data of Table 7, column 5, mean net worth for

households aged 35–49 is $202,000 and the share of the top 1% for them is 25.3 percent;

mean net worth for households 50–64 is $422,000 and the share of the top 1% is 25.3

percent; and, mean net worth for households 65–73 is $388,000 and the share of the top

1% is 25.0 percent. In the simulation, for ages 35–49 mean net worth is $63,000 and the

share of the top 1% is 43.3 percent; for ages 50–64 mean net worth is $420,000 and the top

1%’s share is 20.3 percent; and, for ages 65–73 mean net worth is $444,000 and the top

1%’s share is 22.8 percent. The problem seems to lie at least as much with the model’s

life–cycle specification as with consequences of intergenerational altruism: parents choose

not to begin saving in earnest for retirement until their children have grown up. In the

pure life–cycle simulation described above (i.e., imposing ξ = 0), for example, for ages 35–

20 Empirical work often has difficulty definitively ruling out one model of bequest be-

havior relative to others — e.g., Altonji et al. [1997], Laitner and Ohlsson [2001], Laitner

and Juster [1996]. In general, note that this paper’s model is consistent with estate–tax

avoidance effort on the part of rich households; Gokhale et al. is not.
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49 mean net worth is only $9000. Although reducing the weight parameter ω for children

might seem an easy remedy, halving it hardly helps at all — mean net worth for ages 35–49

only rises to $70,000. Lifetime earning profiles may be a key: while this paper’s calibration

is based on SCF’s cross sectional evidence, panel data for very high earners might show

episodes of peak earnings occurring early in life for some, such as professional athletes,

and late in life for others, such as corporate executives. Conceivably, heavy life–cycle

saving from households with early episodes offsets the late accumulations of many others.

Another possibility is that precautionary saving for lifetime exigencies plays a larger role

in practice than in the model.

Policy. Section 2’s discussion of Figure 3 shows that the interest elasticity of the supply

of financing at the steady–state equilibrium point can be crucially important for public

policy. The bottom of Table 6 numerically solves for elasticities for each value of γ.

The demand elasticities are all small and identical; all come from (19).

The supply elasticities, on the other hand, vary greatly. For γ = −2, the supply

elasticity is .8; for γ = 0, it is 3.4. However, in the neighborhood of γ = .7, it is 18–20.

In terms of Figure 3, our best calibration then implies an outcome resembling point F

rather than E. This leads to the prediction that changes in social security policy and

national debt will tend not to affect the U.S. economy’s steady–state interest rate and

capital intensivity very much at all — probably this paper’s most unexpected result. The

outcome clearly contrasts with conventional life–cycle simulations — e.g., Auerbach and

Kotlikoff [1987], Kotlikoff [1998], Altig et al. [2001], and others.

Share of Life–Cycle Wealth Accumulation. A well–known paper by Kotlikoff and Sum-

mers [1981] argued that life–cycle saving might account for as little as 20% of total U.S.

private net worth. Modigliani [1988] subsequently suggested a figure of 80%. Altig et

al. [2001] suggest that bequests account for about 30% of private net worth.

As stated above, one can simulate our model with r = .069 and ξ = 0, the latter
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eliminating intergenerational transfers within dynasties. Steady–state private net worth

as a fraction of empirical net worth then provides a measure of the relative importance of

life–cycle saving. The last row of Table 6 presents outcomes.

In all of the simulations, life–cycle saving alone explains two–thirds of private net

worth. Thus, dynastic behavior’s effect on the elasticity of Figure 3’s supply curve seems

much more dramatic than its contribution to total wealth accumulation.21

7. Conclusion

This paper studies a model which combines life–cycle and dynastic motives for saving.

It calibrates a steady–state equilibrium version of the model using U.S. data on total

national wealth and aggregative estate tax revenues. The calibrated model is consistent

with the high degree of inequality in the actual U.S. distribution of private net worth,

though it does not match the empirical distribution at all ages perfectly.

The most surprising result of this paper’s calibration is that the model strongly favors

parameter values which yield a very high overall interest elasticity for the steady–state

supply of net worth for the economy. The implication is that paying down the national

debt or funding part, or all, of the social security system — as by setting up private lifetime

accounts for individual households — would tend to have very little long–run effect on

interest rates or the economy’s capital intensivity. The model is fundamentally very simple

— with, for example, inelastic labor supplies and a single source of heterogeneity among

households. The results warn, nevertheless, that policy analyses based on conventional

overlapping generations models — without altruistic intergenerational transfers — may be

misleading.

21 In the experiment reducing the weight of minor children to ω = .25 mentioned above,

the share of steady–state wealth due to life–cycle saving rises to .79. Nevertheless, the

elasticity of the supply curve remains large, namely, 15.4.
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Table 1. The Distribution of Earnings

SCF Data Theoretical Model

Statistic Un– Adjusted Normalized, DF=100 DF=3.83
adjusted Singles Ages 22–65,

Restricted
Amounts

Gini .62 .57 .40 .42 .45
Share Top .5% 10.2% 9.8% 8.3% 2.7% 8.3%
Lower Bound $311,000 $385,000 $6.90 $4.85 $5.45
Share Top 1% 14.0% 13.2% 11.1% 4.6% 10.4%
Lower Bound $245,000 $267,000 $4.58 $4.13 $4.24
Share Top 2% 19.7% 18.3% 14.9% 7.9% 13.7%
Lower Bound $170,000 $200,000 $3.38 $3.44 $3.37
Share Top 3% 24.0 22.2% 18.0% 10.8% 16.5%
Lower Bound $134,000 $160,000 $2.78 $3.07 $2.95
Share Top 4% 27.4% 25.5% 20.6% 13.4% 18.9%
Lower Bound $112,000 $139,000 $2.47 $2.83 $2.67
Share Top 5% 30.4% 28.4% 22.9% 15.8% 21.3%
Lower Bound $100,000 $120,000 $2.27 $2.65 $2.46

Share Top 10% 42.4% 39.7% 32.4% 26.1% 30.8%
Lower Bound $75,000 $90,000 $1.63 $2.09 $1.92

Share Top 20% 60.3% 56.6% 46.4% 42.0% 45.5%
Lower Bound $52,000 $66,000 $1.23 $1.57 $1.44

Share Top 50% 91.4% 88.6% 75.4% 73.7% 74.9%
Lower Bound $24,000 $33,000 $.77 $.91 $.85

Share Top 90% 100.1% 100.1% 97.3% 97.1% 97.2%
Lower Bound $0 $0 $.33 $.41 $.39

Mean $35,000 $45,000 $1.000 $1.000 $1.000
Observations (incl. 21,270 21,270 14,021 NA NA
all imputations)

Households 4254 4254 2805 NA NA

Source: col. 1: 1995 SCF. See text.
col. 2: Previous, double singles’ earnings and halve weight.
col. 3: Previous, normalize mean, ages 22–65, and amounts .2–10,000.
col. 4: Model, degrees freedom 100.
col. 5: Model, degrees freedom 3.83.



Table 2. Estate Tax Rates 1995 (Percent)

Tax Bracket Nominal Effective Marginal Perceived Marginal Tax
Marginal Tax Rate Rate After Correction

($ thousands) Tax Rate For Capital Gains
Empirical Assumed Empirical Assumed

For For
Simulations Simulations

0 – 10 18 0 0 -1.5 -1.5
10 – 20 20 0 0 -1.5 -1.5
20 – 40 22 0 0 -1.5 -1.5
40 – 60 24 0 0 -1.5 -1.5
60 – 80 26 0 0 -1.5 -1.5
80 – 100 28 0 0 -1.5 -1.5
100 – 150 30 0 0 -1.5 -1.5
150 – 250 32 0 0 -1.5 -1.5
250 – 500 34 0 0 -8 -1.5
500 – 750 37 0 0 -6 -1.5
750 – 1000 39 0 0 -6 -1.5
1000 – 1250 41 21 21 16 17
1250 – 1500 43 23 23 17 17
1500 – 2000 45 24 24 18 17
2000 – 2500 49 24 24 19 17
2500 – 3000 53 26 26 20 17
3000 – 10000 55 32 30 10 17
10000 – 15000 55 32 30 18 17
15000 – 20000 55 30 30 17 17
20000 – 30000 55 30 30 17 17

Source: see text.



Table 3. Gross Estates, Marital and Charitable Deductions

Bracket Gross Estate Marital Deductions Charitable Deductions

number amount number amount number amount
(thousand $) (000) (bil $) (000) (bil $) (000) (bil $)

1995 U.S. Federal Estate Tax Data

0 – 600 37.3 26.5 14.9 5.4 5.8 1.0
600 – 1000 24.6 34.3 12.2 10.5 5.0 1.8

1000 – 2500 5.3 17.1 2.8 6.3 1.4 .9
2500 – 5000 1.7 10.9 .9 4.2 .5 1.0
5000 – 10000 .6 7.4 .3 3.2 .2 .7
10000 – 20000 .3 14.7 .2 6.1 .1 3.4

Simulations Using Estimated θ’s

0 – 600 22.5 17.2 13.9 5.6 22.5 1.0
600 – 1000 16.6 24.8 12.4 9.5 16.6 1.3

1000 – 2500 6.0 19.8 3.4 6.3 6.0 1.1
2500 – 5000 3.2 21.2 2.0 7.1 3.2 1.2
5000 – 10000 1.1 15.2 .6 4.0 1.1 .9
10000 – 20000 .3 12.4 .3 4.7 .3 3.4

Source: see text.



Table 4. Survival Rates and Experiential

Human Capital

Age qs es Age qs es

22 1.0000 20004 57 .9533 68094
23 1.0000 24376 58 .9451 64482
24 1.0000 28747 59 .9362 59609
25 1.0000 33120 60 .9264 54738
26 1.0000 37492 61 .9158 49866
27 1.0000 41863 62 .9042 44994
28 1.0000 44672 63 .8918 40123
29 1.0000 45915 64 .8785 35250
30 1.0000 47159 65 .8643 30378
31 1.0000 48402 66 .8493
32 1.0000 49646 67 .8333
33 1.0000 51166 68 .8163
34 1.0000 52961 69 .7982
35 1.0000 54757 70 .7789
36 1.0000 56552 71 .7585
37 1.0000 58347 72 .7370
38 1.0000 60101 73 .7143
39 1.0000 61816 74 .6904
40 1.0000 63528 75 .6654
41 1.0000 65241 76 .6393
42 1.0000 66956 77 .6120
43 1.0000 69637 78 .5835
44 1.0000 73290 79 .5539
45 1.0000 76941 80 .5233
46 1.0000 80593 81 .4918
47 1.0000 84244 82 .4526
48 1.0000 85331 83 .4049
49 1.0000 83853 84 .3483
50 .9957 82375 85 .2838
51 .9909 80898 86 .2142
52 .9858 79420 87 .1446
53 .9803 77505 88 .0824
54 .9743 75153 89 .0354
55 .9678 72799 90 .0087
56 .9608 70447

Sources: Column 1 from average death rates 1900,
Statistical Abstract of the United States [1997,p.89].
Column 2 from 1995 SCF — see text.



Table 5. Parameter Values
and Empirical Ratios

Name Value

Parameter

α .3466
δ .0567
g 1.0100

τ ss .0607
µη -.1020
ση .3032
n 3.83
ζ .45
ω .5000

Ratio

Gt/(W · Et) .2838
(Kt + Dt)/(W · Et) 4.9015

[β · (1 + r · (1 − τ))]
1

1−γ 1.0257

Source: see text.



Table 6. Simulated Distribution of Wealth

γ =

Statistic -2.0 0.0 0.6 0.7 0.8

Gini .80 .79 .76 .75 .74
Share Top 1% 40.9% 37.2% 28.6% 25.0% 20.6%
Lower Bound $1,173,000 $1,318,000 $1,560,000 $1,644,000 $1,703,000
Share Top 2% 45.1% 41.9% 34.3% 31.3% 27.3%
Lower Bound $837,000 $883,000 $1,022,000 $1,120,000 $1,222,000
Share Top 3% 48.7% 45.7% 38.7% 35.9% 32.3%
Lower Bound $697,000 $762,000 $891,000 $945,000 $1,002,000
Share Top 4% 51.3% 48.7% 42.4% 40.0% 36.6%
Lower Bound $526,000 $580,000 $737,000 $798,000 $871,000
Share Top 5% 53.6% 51.2% 45.6% 43.4% 40.3%
Lower Bound $496,000 $516,000 $644,000 $694,000 $769,000

Share Top 10% 64.1% 62.0% 57.5% 55.9% 53.9%
Lower Bound $418,000 $436,000 $472,000 $484,000 $499,000

Share Top 20% 78.6% 77.1% 74.4% 73.5% 72.5%
Lower Bound $275,000 $282,000 $296,000 $304,000 $314,000

Share Top 50% 99.5% 99.4% 99.3% 99.3% 99.2%
Lower Bound $24,000 $30,000 $41,000 $44,000 $51,000

Share Top 90% 100.0% 100.0% 100.0% 100.0% 100.0%
Lower Bound $0 $0 $0 $0 $0

Mean $219,000 $219,000 $219,000 $218,000 $217,000
Estate Tax $55.7 bil. $47.1 bil. $27.6 bil. $20.0 bil. $10.9 bil.
Revenue

Parameters
β 1.02 .97 .96 .96 .95
ξ .09 .47 .77 .82 .88
τ .23 .23 .23 .23 .24

Supply and Demand Elasticities for Figure 3
(absolute values)

Supply .8 3.4 17.8 19.0 19.7
Demand .5 .5 .5 .5 .5

Share of Private Net Worth from Life–Cycle Saving
Fraction .66 .66 .66 .66 .66

Source: See text.



Table 7. Unadjusted and Adjusted 1995 SCF Distribution of Wealth

Variant

Statistic 1 2 3 4 5

Share Top 1% 34.9% 29.4% 28.2% 28.1% 27.7%
Lower Bound $2,456,500 $2,545,838 $2,566,387 $2,335,019 $2,335,847
Share Top 2% 43.1% 36.9% 35.4% 35.3% 35.1%
Lower Bound $1,317,200 $1,509,913 $1,523,435 $1,354,714 $1,378,650
Share Top 3% 48.5% 42.1% 40.4% 40.2% 40.1%
Lower Bound $997,029 $1,186,598 $1,200,041 $1,049,550 $1,056,242
Share Top 4% 52.6% 46.3% 44.4% 44.1% 44.1%
Lower Bound $786,585 $958,947 $972,148 $854,263 $854,265
Share Top 5% 56.1% 49.8% 47.8% 47.4% 47.5%
Lower Bound $679,789 $833,960 $848,717 $745,184 $751,694

Share Top 10% 67.9% 62.9% 60.6% 59.7% 60.0%
Lower Bound $381,022 $534,293 $547,208 $485,742 $490,099

Share Top 20% 80.6% 78.2% 75.7% 74.7% 75.1%
Lower Bound $197,109 $284,940 $297,142 $263,500 $260,888

Share Top 50% 96.4% 95.9% 94.0% 93.6% 93.7%
Lower Bound $57,400 $74,469 $86,702 $81,466 $78,715

Share Top 90% 100.3% 100.2% 99.8% 99.8% 99.8%
Lower Bound $60 $500 $11,398 $11,153 $11,047

Gini .79 .76 .73 .73 .73
Mean $212,820 $255,500 $267,620 $240,158 $238,063

Observations (incl. 21,495 21,495 21,495 21,495 19,111
all imputations

Households 4,299 4,299 4,299 4,299 3,822

Source: col 1: 1995 SCF (see text)
col 2: Previous, including all private pensions
col 3: Previous, including all consumer durables
col 4: Previous, less income taxes on private pensions and IRAs, less capital gains taxes
col 5: Previous, ages 22–73.
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