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Abstract 

Theoretical models argue that poor health will contribute to early exit from the labor 
market and the decision to take early Social Security retirement benefits (Old-Age or OA 
benefits). However, most empirical estimates of the causal importance of health on the 
decision to take early OA benefits have been forced to rely on global measures such as 
self-rated work limitations or self-rated health.  We contribute to the empirical literature 
by using a more objective measure of health, fatness, to predict early receipt of OA 
benefits. We do so by estimating the causal impact of fatness within an empirical model 
using the method of instrumental variables, and testing the robustness of our findings 
using the most common measure of fatness in the social science literature – body mass 
index – with what is a more theoretically appropriate measure of fatness – total body fat 
and percent body fat.  Overall, our conclusion is that fatness and obesity are strong 
predictors of early receipt of OA benefits. 
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Introduction 

A substantial literature has established that health is a critical factor in the 

decision of workers to apply for early Social Security Old-Age (OA) benefits (see 

Lumsdaine and Mitchell, 1999, for a review of this literature and Currie and Madrian, 

1999 for a broader review of the econometric problems of estimating the effect of health 

in labor supply models).  The vast majority of studies in this literature have used 

subjective measures of health such as self-rated work limitations or self-rated health. 

However as Bound, Steinbricker and Waidmann (2006) recently point out, there are three 

potential problems with such survey measures: they are discrete, whereas the construct 

researchers are interested in measuring is presumably continuous; they are presumably 

error ridden, since not everyone will use the same scale when responding to survey 

questions; and they are likely to be endogenous to retirement decisions, since it seems 

plausible that responses to these global questions will be related to labor market status.  

 In this paper we use data from various years of the Panel Study of Income 

Dynamics (PSID) to utilize more objective measures of health to model early receipt of 

OA benefits in a manner that addresses each of the three objections outlined by Bound et 

al. (2006) above.  Early receipt of OA benefits, not early retirement, is our outcome of 

interest both because the timing of OA benefits is well-defined whereas there are many 

competing definitions of retirement, which complicates the study of that outcome and 

because the timing of OA acceptance is of policy concern in and of itself.   

In 1986, the PSID first obtained self reported weight and height information from 

its respondents and in many cases the weight and height of their biological relatives. We 

take advantage of these variables to create alternative measures of fatness, which the 

medical literature has consistently found to have adverse effects on health. We estimate 

the causal impact of various measures of fatness and obesity on early receipt of OA 

benefits.  That is, we model the decision of males to first take OA benefits at their earliest 

possible age of eligibility—age 62.   

Due to the rising prevalence of obesity, it is important to determine the role that 

fatness plays in the decision to take early OA benefits, since recent changes in Social 

Security retirement rules, which are gradually pushing back the normal retirement age for 

OA benefits to 67 and lowering the actuarial value of taking Social Security benefits at 
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age 62, were in part passed to discourage further cohorts of older workers from exiting 

the labor force and taking OA benefits at age 62.   

 A recent literature has linked fatness or obesity to a variety of social science 

outcomes such as wages (Cawley, 2004), disability (Lakdawalla, Bhattacharya, and 

Goldman, 2004; Ferraro et al., 2002; Cawley, 2000; Narbro et al., 1996), and the 

transition from welfare to work (Cawley and Danziger, 2005).  However, this is the first 

paper to examine the link between fatness or obesity and early receipt of OA benefits.  

Olshansky et al. (2005) projected the implications for the recent rise in obesity for the 

Social Security program, but they focus on how obesity impacts mortality and not on how 

obesity might affect the timing of OA benefit receipt.  This paper fills that gap by 

estimating the correlation and causal impact of fatness and obesity on whether males start 

taking OA benefits when they first become available at age 62.  To preview our results, 

we find that fatness and obesity are strong predictors of early receipt of OA benefits.  For 

example, obesity defined using body mass index is associated with a roughly 25 

percentage point higher probability of taking OA benefits at age 62. 

 

Fatness and Obesity: Definitions, Trends, Implications, and Measurement 

A wide variety of social science outcomes are affected by health (Culyer and 

Newhouse, 2000), and one important dimension of health is fatness.  Fatness is a concept 

that refers to the abundance of adipose tissue, in which energy is stored in the form of fat 

cells (Bjorntorp, 2002). Fatness is a risk factor for ischemic heart disease, congestive 

heart failure, stroke, cancer, respiratory disease, diabetes, hyperlipidemia, hypertension, 

asthma, sleep apnea, arthritis, degenerative joint disease, gastric reflux, and depression 

(Pi-Sunyer, 2002; U.S. D.H.H.S., 2001; NIH, 1998).  The current view of fatness in the 

medical literature is that fat collectively constitutes an endocrine organ that secretes 

leptin, which damages the cardiovascular system, and resistin, which causes insulin 

resistance and Type II diabetes (Trayhurn and Beattie, 2001).  The link between fatness 

and morbidity has been confirmed in hundreds of randomized controlled trials in the 

medical literature showing the correlation between weight loss and improvement in 

obesity-related comorbidities (NIH, 1998; U.S. DHHS, 2001). 
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The health impact of fatness is particularly troubling because the average weight 

of Americans has risen considerably in the past few decades (Hedley et al., 2004; Ogden 

et al., 2006).  Given the link between fatness and morbidity and mortality, excessive 

fatness is now recognized as one of the most serious public health challenges facing the 

U.S. (U.S. DHHS, 2001) and other industrialized countries (International Obesity Task 

Force, 2005).   

In this paper, we investigate the best way to measure fatness for the purpose of 

better predicting early receipt of OA benefits.  To date, fatness has almost universally 

been measured in the social science literature using body mass index (BMI), which is 

weight in kilograms divided by height in meters squared (U.S. DHHS, 2001; NIH, 

1998).2  The advantage of BMI is that the information required to calculate it (weight and 

height) is easy to collect and relatively common in social science datasets such as the 

National Longitudinal Surveys of Youth (NLSY), the Panel Study of Income Dynamics 

(PSID), the Health and Retirement Study (HRS), the Behavioral Risk Factor Surveillance 

System (BRFSS), the National Health Interview Survey (NHIS), and the National 

Longitudinal Survey of Adolescent Health (Add Health).   

Despite the widespread use of BMI among social scientists, within the medical 

literature BMI is considered to be a very limited measure of fatness and obesity because 

it does not distinguish body composition (McCarthy et al., 2006; Yusuf et al 2005; 

Gallagher et al 1996; Smalley et al 1990; Garn et al 1986). For example, it overestimates 

fatness among those who are muscular (U.S. DHHS, 2001; Prentice and Jebb, 2001).  

Gallagher et al. (1996) calculated that BMI alone accounts for just 25 percent of between-

individual differences in percent body fat.   

  Obesity is a concept that refers to excessive fatness (Bjorntorp, 2002; Bray, 

Bouchard, and James, 1998).  The most common definition of obesity used in the social 

science literature is based on BMI: a BMI greater than or equal to 30.  However, there are 

a variety of definitions of obesity, corresponding to the various measures of fatness, and 

the strengths and weaknesses of each definition of obesity depend on the strengths and 

weaknesses of the fatness definition on which it is based.  For this reason, the clinical 

                                                 
2 For example, EconLit lists 55 articles with the words “body mass index” or “BMI” in the abstract or 
among the keywords, but zero articles with the more accurate measures of fatness in the abstract or among 
the keywords. 
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weight classification of obesity that is based on BMI suffers the same limitation as BMI: 

it ignores body composition.  Smalley et al (1990) tested the accuracy of BMI-based 

definitions of obesity at identifying those determined to be obese through measurements 

of body fat and found that BMI correctly identified only 44.3 percent of obese men and 

55.4 percent of obese women.  Put another way, a majority of truly obese men are 

misclassified as non-obese if one uses the BMI-based definition of obesity.  Subsequent 

studies in the medical literature have confirmed this finding (Wellens et al 1996). 

The use of BMI to classify people as obese also results in false positives because 

people who are muscular but not fat have a higher BMI; these false positives totaled 9.9 

percent of non-obese men and 1.8 percent of non-obese women (Smalley et al, 1990).  

(Women are less likely to be inaccurately classified as obese on the basis of BMI because 

they are less likely to be heavily muscular.)  Based on all of these findings, the 

researchers concluded that the ability of BMI in particular, and weight-height indices in 

general, to identify obesity defined using direct measures of fatness is “poor” (Ibid, p. 

408). Moreover, the inferiority of BMI at predicting health outcomes relative to more 

accurate measures of fatness led a 2005 editorial in the British medical journal The 

Lancet to conclude “…current practice with body-mass index as the measure of obesity is 

obsolete, and results in considerable underestimation of the grave consequences of the 

overweight epidemic” (Kragelund and Omland, 2005, p. 1590). 

 Despite the skepticism in the medical literature toward BMI as a measure of either 

fatness or obesity, virtually no tests of the robustness of social science-based findings 

using these more accurate measures of fatness have been undertaken on social science-

based outcomes.3  Here we conduct such a test with respect to one important outcome: 

early receipt of Social Security benefits. 

 

More Accurate Measures of Fatness  

While there is consensus in the medical literature that BMI is a poor measure of 

fatness (McCarthy et al., 2006; Yusuf et al 2005; Gallagher et al 1996; Smalley et al 

                                                 
3 To our knowledge, the only such study is Wada (2005), which uses the NHANES III to estimate total 
body fat and fat-free mass in the NLSY but is focused more narrowly to explore the differences across race 
and gender in the correlation between BMI and wages found in Cawley (2004) and Averett and Korenman 
(1999). 
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1990; Garn et al 1986), there is no consensus on which of the more accurate measures of 

fatness is best (Freedman and Perry, 2000).  Candidates include: total body fat (TBF), 

percent body fat (PBF) which is total body fat divided by total mass, waist circumference 

(WC), and waist-to-hip ratio (WHR).   

Total body fat (TBF) and percent body fat (PBF) are appealing measures of 

fatness because the medical literature suggests that it is fat that causes morbidity and 

mortality (Pi-Sunyer, 2002; U.S. DHHS, 2001).  For example, Trayhurn and Beattie 

(2001) argue that fat directly causes Type II diabetes and cardiovascular disease by 

secreting resistin and leptin; these findings suggest that TBF may be the most relevant 

measure of fatness for predicting social science outcomes affected by health because the 

sheer volume of fat may determine the amount of leptin and resistin released; on the other 

hand PBF may be a better measure if additional fat-free-mass can dilute the health 

impacts of those secretions. 

Findings from the medical literature also suggest that it is not just the amount of 

fat that matters, but also the location or distribution of that fat.  In particular, abdominal 

visceral fat (i.e. that located around the internal organs) is associated with an elevated risk 

of morbidity (Bray, Bouchard, and James, 1998).  The amount of abdominal visceral fat 

can be assessed using laboratory methods like dual-energy X-ray absorptiometry, but in 

practice it is frequently measured using either waist circumference or waist-to-hip ratio; 

comparisons have found that these two are highly correlated with abdominal fat (Snijder 

et al., 2002).  Yusuf et al. (2005) conclude that by a variety of standards, waist-to-hip 

ratio (WHR) and, to a lesser extent, waist circumference better predict heart attack than 

does BMI; an accompanying comment in The Lancet entitled “A Farewell to Body-Mass 

Index?” concluded that these findings represent “…the final nail in the casket for body-

mass index as an independent cardiovascular risk factor…” (Kragelund and Omland, 

2005, pp. 1589, 1590). 

 While it is generally accepted that central adiposity (abdominal fat) is associated 

with greater risk of morbidity and mortality, it is not clear that waist-to-hip ratio is the 

best way to measure it.  For example, a 1998 NIH report entitled Clinical Guidelines on 

the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults 
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recommends the use of waist circumference rather than waist to hip ratio to measure 

central adiposity (NIH, 1998, p. xxiv).   

Until recently the costs of collecting both measurements of fatness and in-depth 

social science outcomes in one dataset were prohibitive. As a result, medical datasets that 

include direct measures of fatness contain few outcomes of interest to social scientists, 

and social science datasets do not contain accurate measures of fatness such as TBF, 

PBF, WC, or WHR.  We expect this to change as social science researchers become more 

aware of the benefits of more accurate measures of fatness and as the costs of collecting 

them continue to decline. Until then however, TBF and FFM can be estimated in social 

science datasets using a two-step method.  We use the NHANES III to generate 

prediction equations for these more accurate measures of fatness; this method is 

described in detail in our recent NBER working paper (Cawley and Burkhauser, 2006). 

 

Data: The Panel Study of Income Dynamics (PSID) 

The PSID is administered by the Survey Research Center at the University of 

Michigan.  The PSID began in 1968 with a sample of 5,000 families.  All current PSID 

families contain at least one member who was either part of the original 5,000 families or 

was born to a member of one of those families.  Although the original sampling scheme 

disproportionately selected individuals from low-income families, a representative 

sample of the U.S. population can be obtained by excluding the original oversample from 

the data or by utilizing the sample weights included with the data.  Starting in 1997 the 

PSID began to administer its survey every other year and some members of the low-

income sample were dropped from the study because resources were not available to 

continue to follow all members of the ever expanding sample.   

The PSID collected information on each respondent’s weight and height in 1986, 

1999, 2001, 2003, and 2005 (which is not yet publicly available).  A unique strength of 

the PSID for our research question is that it contains the weight and height of biological 

relatives for many respondents.  This is available two ways.  First, data on biological 

relatives is available as a natural byproduct of the PSID design, which follows families 

that spin off from the original 1968 families.  As a result, the children of PSID 

respondents who become themselves heads of families remain in the survey, and their 
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self-reported weight and height is recorded.  The Family Identification Mapping System 

(FIMS) is used to merge data on adult children of respondents.  The FIMS provides 

identification codes for each of a respondent’s family members by type of relationship 

(e.g. biological parent, non-biological parent, biological grandparent, full sibling, half 

sibling).  The FIMS ensures that our linking of fathers to adult children is straightforward 

and accurate. 

Second, the PSID collected data on the height and weight of children in the Child 

Development Supplements (CDS) I (conducted in 1997) and II (conducted in 2002-

2003).  The CDS data are not useful for our project because respondents who reach age 

62 by 2003 and have reported their height and weight in 1987 prior to reaching age 62 are 

generally too old to have had minor children in the household in 1997.   

 A weakness of the PSID is that it records individual receipt of Social Security 

benefits and the type of benefit (old age, survivor, disability, Supplemental Security 

Income, etc.) only in certain years.  Hence for male heads that turn age 62 in 1993 or 

earlier we know whether or not they take OA benefits for the first time at age 62. After 

1993, questions are asked regarding whether Social Security benefits are received by any 

member of the family but not about whom in the family receives these benefits or the 

type of Social Security benefit they receive.   

 Thus, after 1993, we can not directly identify who in the family is receiving 

Social Security benefits. Hence for those male heads that turn age 62 after 1993 we use 

these more limited data in the following way to determine whether the family head first 

began receiving OA benefits at age 62.  We restrict our sample to male family heads who 

turn 62 before 2003, and whose family is not receiving Social Security benefits when he 

is aged 61.  This conservative method of allowing male heads into our sample will reduce 

sample size but will also reduce the risk of identifying a male head as first receiving OA 

benefits at age 62 when in fact those benefits are coming from an alternative source. To 

be in our sample, no family member can be receiving benefits when the male head is 61. 

Our presumption is that the appearance of Social Security benefits in the family for the 

first time in the year when the male head turns age 62 can plausibly be assumed to be 

caused by his taking early OA benefits. Of course, the tradeoff is that we will 

inappropriately exclude some male heads from our sample because at age 61 someone 
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else in the family is receiving some alternative form of Social Security benefits. We will 

also exclude all male heads who were receiving Disability Insurance (DI) benefits at age 

61.   

To clarify, when possible, we use the PSID questions that are specific to the head 

to determine receipt of OA benefits at age 62.  When individual-specific questions are not 

available (i.e. after 1993), we impute receipt of such benefits in the manner described 

above. 

We limit our sample to male heads of households because in this cohort, the 

males are considerably more likely to be the first to reach age 62 (i.e. to be older than 

their wives) and so we can observe families transitioning from not receiving Social 

Security benefits when the male head is 61 to receiving Social Security benefits when the 

male head turns 62.  This is strong evidence that the male head began receiving OA 

benefits at age 62.  In contrast, if the husband is older than the wife, the household is 

likely to already be receiving Social Security benefits by the time the wife turns 62 and 

therefore it is harder to determine whether the wife begins receiving OA benefits at 62.  

Summary statistics for our PSID sample are provided in Appendix Table 1. 

An alternative dataset that could be used to study early receipt of OA benefits is 

the Health and Retirement Study (HRS). The HRS offers many advantages over the 

PSID: it is a larger sample, it more clearly assigns type of Social Security benefit 

received to specific individuals, it has linked Social Security administrative records on 

benefit timing and receipt.  The HRS, like the PSID, also includes data on the weight and 

height of respondents.  However, the PSID offers one key advantage over the HRS that is 

of critical importance for our research agenda: the PSID includes the weight and height of 

biological relatives, which allows us to estimate IV models and make statements about 

causality. 

 

Data: National Health and Nutrition Examination Survey III (NHANES III) 

The NHANES III is a nationally representative cross-sectional survey conducted 

from 1988 to 1994.  All respondents were asked to complete an extensive interview 

(during which they were asked to report their weight and height) and undergo a 

subsequent medical examination in a large mobile examination center (during which their 
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weight and height were measured).  The NHANES III sample consists of 31,311 

examined respondents.  In this paper we use NHANES III adults aged 18-65. 

The NHANES III is the “Rosetta Stone” for estimating more accurate measures of 

fatness, because it includes the data necessary to calculate many measures of fatness; it 

includes: self-reported weight and height, measured weight and height, measured waist 

circumference, measured waist-to-hip ratio, and Bioelectrical Impedance Analysis (BIA) 

readings that can be used to calculate fat-free mass and therefore total body fat and 

percent body fat (we explain this calculation in the next section).4  This allows 

researchers to regress measured fatness on self-reported weight and height, transport the 

coefficients on the self-reported variables to any social science dataset that includes self-

reported values, and to then construct estimates of measured fatness.  We drop as 

implausible observations with self-reported height either under four feet or over seven 

feet (one observation of each) or with self-reported weight under 80 pounds (one 

observation).   

As part of the examination for respondents 12 years of age and older, 

measurements from Bioelectrical Impedance Analysis (BIA) were recorded.  NHANES 

examiners attached a pair of electrodes to the right wrist and ankle, and passed a very 

small (50 kHz) electrical current through the body and measured the resistance of the 

body to the current.  These measurements can be used to calculate fat and fat-free mass 

because the resistance to an electric current is inversely related to the amount of fat-free 

mass in the body; the water in muscles conducts electricity while fat is an insulator.   

BIA is a well-established method widely used to measure body fat, and 

considerable planning and training were devoted to maximizing the validity and 
                                                 
4 There are a variety of ways of measuring TBF and therefore PBF, which range from methods that use 
very expensive equipment that can be used only in a lab setting and which require subject cooperation or 
exposure to radiation (e.g. magnetic resonance imaging or MRI, dual x-ray absorptiometry) to more 
portable (field-based) methods that are less expensive and rapid (e.g. Bioelectrical Impedance Analysis or 
BIA) (Freedman and Perry 2000).  In this paper, we use measures of TBF and PBF that were estimated by 
BIA.  Each method of measuring body composition has its pros and cons (Freedman and Perry 2000); for 
example, the BIA method of estimating fat-free mass is less accurate for the severely obese (NIH, 1996).  
However, despite this limitation, the NIH endorses BIA as a useful technique for measuring body fat and 
body composition generally (NIH 1996).  Prentice and Jebb (2001) conclude: “Bioimpedance is probably 
the only technique that can meet the criteria of being simple, rapid, and free from operator variability” 
(page 146).  However, it is not our position that BIA is preferable to all other methods of measuring body 
fat; we use it because it is one method endorsed by the NIH, it is the only method for which data is now 
available in a large, nationally representative U.S. dataset - the National Health and Nutrition Examination 
Surveys (U.S. DHHS, 1994). 
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reliability of the BIA measurements taken as part of the NHANES (NIH, 1996; US 

DHHS, 1994).5  BIA readings are missing for many NHANES III respondents.  We have 

complete data for 2,138 white females, 1,861 African American females, 1,911 white 

males, and 1,634 African American males.  BIA readings are converted into measures of 

Fat Free Mass using the equations provided in Sun et al. (2003); for more detail on this 

procedure see Cawley and Burkhauser (2006).  BIA predicts fat-free mass, but total body 

fat is easily determined using the identity below: 

Total body fat = weight – fat-free mass 

and: 

   Percent body fat = (Total body fat / weight) * 100 

We cannot calculate FFM or TBF in NHANES III for Mexican Americans 

because the sample used to generate the equations provided in Sun et al. (2003) excluded 

Hispanics.   

The NHANES III contains little data on labor market activity or other social 

science outcomes, so in isolation it is not of much value in conducting social science 

research.  However, in conjunction with social science datasets such as the PSID it is 

very useful, as it allows us to combine its rich biomarker data with the rich data on 

employment, relationships, and other outcomes in social science datasets. 

We take into account the complex survey design of the NHANES III by 

estimating our models using svy commands in Stata version 9.2 that account for the 

strata, primary sampling units, and sample weights of the NHANES III.  Because we look 

separately at race-gender cells, and there are missing values of BIA readings for many 

respondents, there were instances in which strata had only one primary sampling unit, 

which violates the requirements of Stata’s complex survey design commands.  Rather 

than drop these observations and lose information, we merge the stratum with only one 

PSU with another stratum, and give the PSU a unique identifier within the new stratum.6   

                                                 
5 Although BIA readings were also included in each of the annual NHANES surveys since 1999, the 
NHANES III is the most recent survey for which there are consensus prediction equations in the medical 
literature to convert these readings to Total body fat and Fat-free mass. 
6 This was not a problem for white females, but there was one such stratum (with three observations) for 
white males, six such strata (with 21 observations) for African American females, and five such strata (also 
with 21 observations) for African American males. 
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We use the WTPFEX6 sample weight, which is recommended when the medical 

examination variables (such as weight and BIA measurements) are studied. 

Using the NHANES III data, we regress total body fat (TBF) and fat-free mass 

(FFM) on self-reported weight and its square, self-reported height and its square, and age 

and its square.  The set of regressors in this NHANES III regression consists entirely of 

variables also available in social science datasets like the PSID, NLSY, and HRS.  Since 

we found that the coefficients in these regressions differ significantly by race and sex, we 

estimated models separately for white females, white males, African American females, 

and African American males.  (Because there were no Hispanics in the Sun et al. (2003) 

sample, we restrict our analysis to whites and African Americans.)   

The coefficients from these NHANES III regressions can be transported to 

various social science datasets and multiplied by the values of the relevant variables to 

predict TBF and FFM.7  We find that self-reported weight, self-reported height, and age 

are good predictors of total body fat; R-squared values range from .76 to .90.  This 

indicates that the basic self-reported weight data available in several social science 

datasets are sufficient to accurately estimate TBF.  The the fit is better for women 

(around 89 percent of variance explained) than for men (77 percent).  

The results also indicate that self-reported weight, self-reported height, and age 

are good predictors of fat-free mass; the R-squares are in the narrow range of .81 to .82.  

(Unlike the TBF results, the goodness of fit in the FFM regressions is approximately 

equal for men and women.)  This confirms that the basic self-reported weight data 

available in several social science datasets are also sufficient to accurately estimate FFM.   

Researchers can utilize the full variation in PBF, or they can convert it into an 

indicator variable for obesity.  The NIH classifies a man as obese if his PBF exceeds 25 

percent and a woman as obese if her PBF exceeds 30 percent (NIDDK, 2006).   

 

Methods 

                                                 
7 Although TBF and FFM are in kilogram units, the transformation between pounds and kilograms is linear 
so we keep the self-report of weight in pounds since those are the units in which self-reported weight is 
recorded in most social science datasets. 
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We assume that individual i  takes early OA benefits at time t if his health Hit falls 

below some critical limit H*.  Health is assumed to be a function of fatness Fit and other 

characteristics Xit.  Specifically: 

Hit= Fit β + Xit δ  + uit 

Health H is not observed, but we know whether an individual takes early OA benefits; we 

denote SSit=1 if individual i is disabled at time t, and SSit=0 otherwise.  Formally, early 

OA receipt relates to latent health in the following way: 

SSit= 0 if Hit ≥ H* 

SSit = 1 if Hit < H* 

Normalizing H* at H=0, the probability that one takes early OA benefits is equal to the 

following. 

Pr [SSit  = 1 | Xit] = Pr[ Hit <0] 

            = Pr[Fit β+ Xit δ + uit ≤ 0] 

            = Pr [uit < - Fit β - Xit δ] 

(0.1) it it it it it itPr[SS = 1 | F ,X ] = Pr[u < - F - X ]β δ  

With certain assumptions about the distribution of the error term u, one can estimate the 

probability of taking OA as a function of fatness F and characteristics X using probit 

regression. 

We estimate model (0.1) for the following measures of fatness: total body fat, 

percent body fat, body mass index, and clinical weight classifications based on BMI.  

While the PSID does not have measures of TBF or PBF, we estimate them in the PSID by 

transporting coefficients from regressions of TBF and PBF on self-reported weight in the 

NHANES III.  The NHANES III coefficients are multiplied by the values of the same 

variables in the PSID to estimate TBF and PBF for PSID respondents.   

Probit models will be used to estimate the correlation of each of these binary 

outcomes with TBF, PBF, FFM, BMI, or clinical weight classification based on BMI.  

Goodness-of-fit measures (e.g. percent of correct predictions) will be used to determine 

which of the anthropometrics best predicts our outcomes of interest.   

The primary limitation of the probit models is that the correlations reflected in the 

probit coefficients cannot be interpreted as causal.  To classify the sources of potential 

endogeneity in weight, the residual probability of early receipt uit in equation (0.1) can be 
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decomposed as having a genetic component SSG , a non-genetic component SSNG , and a 

residualν that is i.i.d. over individuals and time. 

(0.2) SS SS
it it it itu G NG ν= + +  

Research in behavioral genetics suggests that roughly 25-40 percent of the variation in 

weight is due to genetics while twin studies suggest that the correct figure is between 50-

80 percent (Bouchard et al., 2003).   

Equation (0.1) indicates how early receipt of OA benefits may be correlated with 

fatness.  Fatness, in turn, may be affected by early receipt of OA and personal 

characteristics. 

(0.3) F F
it it it it it it itF X SS Z G NGγ α φ ξ= + + + + +  

In equation (0.3), X is the same vector of variables that affect early receipt of OA 

benefits in equation (0.1), SS is an indicator variable that equals one if the respondent 

receives early OA benefits, Z is a vector of variables that affect fatness but do not 

directly affect the probability of taking early OA benefits, FG represents the influence of 

genetics on fatness, FNG represents the influence of non-genetic factors (such as an 

individual’s choices, upbringing, and culture) on fatness.  Residual fatness is represented 

byξ .   

The variables on the right-hand-side of equation (0.3) illustrate the potential 

pitfalls of a probit estimation of equation (0.1).  First, early receipt of OA benefits may 

affect fatness (if 0α ≠ ).  For example, early receipt may be associated with retirement, 

and presumably a decrease in caloric expenditure. If the decrease in exercise is not offset 

with a decrease in caloric intake, a gain in weight and fatness will result.  A second 

potential pitfall of a probit estimation of equation (0.1) is that genetic factors that 

influence fatness ( FG ) may be correlated with genetic factors that affect early receipt of 

OA benefits ( SSG ).  A third potential pitfall is that non-genetic factors that influence 

fatness ( FNG ) may be correlated with non-genetic factors that affect early receipt of OA 

benefits ( SSNG ).  For example, people may differ in the extent to which they think about 

and plan for distant future outcomes.  People who are farsighted and value outcomes in 

the future are likely to have more successful careers (that they are less likely to retire 

early from) and also to stay in shape.  In contrast, those who are myopic and do not care 
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about future consequences may be more likely to retire early and more likely to become 

overweight.  Each of these scenarios implies that the assumption that F is uncorrelated 

withε  in equation (0.1) is violated and that a probit estimate of β is biased. 

Method of Instrumental Variables 

Perhaps the most convincing research design that would allow one to determine 

whether fatness or obesity causally affected early OA receipt would be a randomized 

controlled trial.  As a thought experiment, imagine that a large number of randomly 

selected subjects were randomly assigned between treatment and control groups.  The 

treatment group would then be “treated” with additional fatness or weight and the control 

group would not.  One could measure the causal impact of fatness or weight on early 

receipt of OA benefits by comparing changes in outcomes for the treatment group to 

changes in outcomes for the control group. 

While that research design would be convincing, it is neither ethical nor feasible 

to endow a treatment group with additional weight.  Because of this, randomized 

controlled trials can never be used to answer research questions like the ones we pose.  

Researchers are forced to look for alternatives to randomized controlled trials.  One 

viable alternative is to find a natural experiment—some variation in weight that was not 

chosen.  Our strategy for identifying the causal impact of fatness or weight on early 

receipt of OA benefits is to exploit one such natural experiment: the variation in weight 

due to genetics.  Each person is endowed before their birth with a set of genes that imply 

a certain predisposition to fatness or body weight.  We explain below how we will exploit 

the genetic variation in weight to answer our research question. 

To eliminate these influences and thereby generate a consistent estimate of the 

impact of fatness on early receipt of OA benefits, we estimate a model of instrumental 

variables (IV).  This becomes possible using IV one can identify a variable or set of 

variables Z from equation (0.3) that are correlated with body weight but not uit, the error 

term in the early OA receipt regression (equation (0.1)). 

We will use an instrument correlated with the genetic variation in fatness ( FG ): 

the fatness of an adult biological child.  In the PSID, children are tracked and surveyed 

after they form their own families.  The Family Information Mapping System of the PSID 

ensures that we are matching biological (as opposed to adopted or step-) children to 
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respondents.  The fatness of the adult biological child could be correlated with the 

father’s personal characteristics, early receipt of Social Security benefits, and genes: 
F F

Ct Ct Ct Ct Ct CtF X D G NGγ α ξ= + + + +  

The subscript C indicates the biological child of the respondent i.   

The identifying assumption in our method of instrumental variables has two parts.  

The first is that the fatness of a biological child is strongly correlated with the fatness of 

the respondent.  A parent and child are expected to share half of their genes, ensuring a 

high correlation between these relatives’ genetic variation in fatness F
CG and

F
iG .  An 

extensive review of the genetics literature concluded that roughly 25-40 percent of the 

variation in body fat (and weight) is due to genetics (Bouchard et al., 1998).  These 

findings imply a strong correlation between the fatness of the respondent iF  and the 

fatness of a biological child CF  that is consistent with the first part of our identifying 

assumption. 

The second part of the identifying assumption is that the fatness of a biological 

child is uncorrelated with uit, the respondent’s residual probability of early receipt of 

Social Security benefits. One might be concerned that the nongenetic variation in the 

biological child’s fatness F
CNG  is correlated with the respondent’s early receipt of 

benefits through the nongenetic variation in the respondent’s probability of early 

receipt SSNG if both are, in part, determined by habits learned in the parents’ family.    

However, studies have been unable to detect any effect of common family 

environment on body weight (Hewitt 1997; Grilo and Pogue-Geile, 1991).  (To clarify, 

individual environment has been found to have a significant influence on weight and 

obesity, but the environment common to members of a family has not.)  Adoption studies 

have consistently found that the correlation in BMI between a child and his biological 

parents is the same regardless of whether the child grew up in the home of the biological 

parents or with unrelated adults (i.e. was adopted); i.e. all of the correlation in weight 

between biological relatives can be attributed to shared genes with no detectable effect of 

shared family environment.  This has been found for BMI (Vogler et al., 1995), weight 

class (Stunkard et al., 1986), and even body silhouette (Sorensen and Stunkard, 1993).  
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Consistent with these findings, studies have been unable to reject the hypotheses that the 

correlations in weight, weight for height, and skinfold measures between unrelated 

adopted siblings are equal to zero (Grilo and Pogue-Geile, 1991).  Studies of twins reared 

apart also find no effect of a shared family environment on BMI; there is no significant 

difference between the correlation in weight of twins reared together and those reared 

apart, nor is the correlation affected by age at separation or the similarity of separate 

rearing environments (Maes et al., 1997; Price and Gottesman, 1991).  Other studies have 

found that genes explain large fractions of variance in diet and eating behaviors and no 

detectable impact of shared environment (Tholin et al 2005; Hur et al 1998).  A 

comprehensive review of studies of the genetic and environmental influences on weight 

and obesity concludes that “...only environmental experiences that are not shared among 

family members appear to be important.  In contrast, experiences that are shared among 

family members appear largely irrelevant in determining individual differences in weight 

and obesity” (Grilo and Pogue-Geile, 1991, p. 520).  Similarly, Hewitt (1997) refers to 

“the impotence of the shared family environment” for obesity (p. 353).  Finally, we use as 

an instrument the weight of an adult child (who in our sample average 29 years old in 

1986); as a result, they have likely not been living at the same address of the respondent 

for many years, further decreasing the likelihood that common environment affects both 

adult child weight and respondent OA receipt.  Absent randomized controlled studies, it 

is difficult to directly test the null hypothesis of no effect of shared environment on body 

weight.  Consequently, the repeated failure to reject the null hypothesis is the strongest 

evidence that will ever be available.  

Alternately, one might be concerned that the genetic variation in the biological 

child’s fatness F
CG is correlated with the respondent’s residual probability of early receipt 

of OA through genetic variation in respondent’s likelihood of early receipt SSG .  For this 

to be true, the genes that determine fatness and any genes that determine early receipt 

would have to be either the same or bundled in transmission.  While it is impossible to 

prove the null hypothesis that relative’s fatness is uncorrelated with the residual in the 

respondent’s early receipt equation, it can be informative to examine whether relative’s 

fatness or weight is correlated with observables that are believed to be related to 

unobserved factors that affect the residual probability of early receipt of OA benefits.   
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Ideally what we would like to measure is the average treatment effect (ATE)- the 

impact of an extra unit of fatness on the average person - but what we measure through 

our method of instrumental variables is the local average treatment effect (LATE)- the 

impact of an extra unit of genetically-determined fatness on the average person in our 

sample (Imbens and Angrist, 1994).  If genetically-determined fatness has a different 

impact on early OA receipt than does fatness caused by discretionary behavior (i.e. not 

genes), the LATE will differ from the ATE.  To our knowledge, no research literature has 

documented a different impact of genetically-determined fatness than environmentally-

determined or behaviorally-determined fatness, but we acknowledge that our results may 

represent a LATE rather than an ATE. 

Our specific instrument is the fatness or obesity of an adult child (we use the same 

measure of fatness for the child as we do for the respondent), controlling for the adult 

child’s age and gender.  Summary statistics for the adult children are provided in the 

bottom of Appendix Table 1.  Probit IV models are estimated using STATA version 9.   

 

How You Measure Fatness Matters: Misclassification of Obesity 

 We have shown that more accurate measures of fatness can be estimated using the 

NHANES III and one of many social science datasets. But is worth the trouble to do it?  

Obesity defined using BMI, though theoretically inferior, may be a reasonable proxy, 

generally correctly classifying who is obese and who is not obese.   

In this section we show that it is worth doing because obesity defined using BMI 

(calculated using measured weight and height) is only weakly correlated with obesity 

defined using percent body fat, and that obesity defined using BMI results in substantial 

misclassification of individuals into weight classifications.   

Although there are many measures of fatness, because of space constraints we 

focus on two measures of obesity: body mass index (based on measured weight and 

height) greater than or equal to 30, and a more accurate measure—percent body fat 

greater than 25% for men or greater than 30% for women (NIDDK, 2006).  The 

correlation between the two is relatively weak: .45 for males and .38 for females.  

Taking obesity status defined using PBF to be the true obesity status, we examine 

how well obesity defined using BMI correctly classifies people.  Table 1 shows that the 
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accuracy of obesity defined using BMI varies by sex.  For example, only 0.17 percent of 

all women classified as obese by BMI are actually not obese judging by percent body fat.  

In contrast, 16.45 percent of all positives are false for men.  One important reason for this 

difference by sex is that men are more likely to have considerable muscle mass.   

In general, false negatives are a much bigger problem than false positives for 

obesity defined using BMI.  In other words, many more people are obese than are 

classified as such by BMI.  The extent of false negatives in Table 1 also varies by sex: 

62.85 percent for females compared to 28.66 percent for males.  Consistent with previous 

studies (Smalley et al., 1990; Wellens et al., 1996), we find that obesity defined using 

BMI does a poor job of classifying people as obese or non-obese. 

One important difference between obesity defined using BMI and that defined 

using PBF is that the PBF-defined obesity is a lower threshold; far larger percentages of 

people are classified as obese using the PBF threshold.  Table 2 shows that while 23.3 

percent of women are classified as obese according to BMI, three times as many (70.1 

percent) are classified as obese by the PBF standard.  The difference for men, though not 

as large, is still striking: 18.9 percent are obese according to BMI, but 43.3 percent are 

obese according to PBF.  The fact that PBF results in a strikingly higher rate of obesity is 

not necessarily an indictment of that measure.  Yusuf et al. (2005) found that waist-to-hip 

ratio was a far better predictor of heart attack than BMI and concluded that BMI greatly 

underestimates the number of people for whom fatness impacts health.  So while it is true 

that more people are classified as obese by PBF than BMI, it is not clear that the 

prevalence of obesity we have become accustomed to, because BMI is usually used to 

define obesity, is the “right” prevalence of obesity. 

 To show how similarly BMI and PBF classify people as obese when controlling 

for this difference in threshold, we choose cutoffs for PBF that generate the same rates of 

obesity as are found when one uses BMI (roughly 23.3 percent for women and 18.9 

percent for men).  The analogous PBF cutoff is 41 percent body fat for women and 29 

percent body fat for men.  Using those PBF cutoffs, we find that the correlation in obesity 

classifications is 70.2 percent for women and 47.1 percent for men.  Treating the PBF 

classification as correct, Table 3 shows that the BMI classification of obesity has a false 

positive rate of 27.74 percent for women and 44.79 percent for men, and a false negative 
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rate of 5.42 percent for women and 9.31percent for men. (Lowering the PBF cutoff that 

defines obesity resulted in an increase in the false positives rate and a decrease in the 

false negative for BMI, reflecting the tradeoff between Type I and Type II error.)  Even 

controlling for the threshold effect, we find that BMI does a poor job of classifying 

people as obese or non-obese. As we show below, the major reason is that BMI does not 

distinguish between fat and fat free mass. 

 

How You Measure Fatness Matters: Racial Disparities in Obesity 

In the next two sections we provide examples of the value of using more accurate 

measures of fatness in social science research.  Although there are many measures of 

fatness, because of space constraints we focus on a few.  Our comparisons confirm that 

the measure of fatness chosen by the researcher has enormous consequences for the 

conclusions drawn about who is obese and how fatness affects social science outcomes.   

As Tables 1, 2 and 3 demonstrate, BMI is a noisy measure of fatness since it does 

not distinguish between fat and fat free mass. This would be less of an issue if this noise 

were random across the population. However as we show in this section, this is not the 

case across race and gender.  Hence the prevalence of obesity will vary across race and 

gender depending on how one defines obesity.  We start by showing in Table 4 how the 

amount of fat-free mass and total body fat vary with race and gender. On average, 

African American females have 3.56 more kg of fat-free mass (such as muscle, bone, and 

fluid) than white females and African American males have 1.33 more kg of fat-free 

mass than white males. Both of these differences are statistically significant.  African 

American women also have on average 3.16 more kg of total body fat, but their 

additional fat-free mass almost perfectly offsets that, so African American females’ 

percent body fat is only 0.79 percentage points greater than that of white females, a 

difference that is not statistically significant.   

African American men not only have more fat-free mass on average, they also 

have on average 2.33 fewer kg of total body fat compared to white men; as a result, their 

average percent body fat is 2.85 percentage points lower than that of white men. This is a 

statistically significant difference.   
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These differences across race in fat-free mass and total body fat are critical, 

because BMI does not account in any way for differences in fat-free mass, nor are there 

different BMI cutoffs for overweight or obesity for African Americans.  Since African 

Americans have on average higher Fat-free mass such as muscle and bone, BMI 

mistakenly classifies them as more likely to be overweight and obese.  Table 5 shows that 

when one defines obesity using BMI, the obesity rate among African American women is 

11.40 percentage points higher than that among white women, a statistically significant 

difference. Again when one defines obesity using BMI, the obesity rate among African 

American men is 0.56 percentage points higher than that of white men, a difference that 

is not statistically significant. 

The black-white gap in obesity rates changes dramatically when one classifies 

people as obese using the more accurate measure of percent body fat.  The second 

column of Table 5 shows that, while the black-white gap in obesity rates among women 

continues to be statistically significant, it falls by more than half when one uses the more 

accurate measure of PBF.  Even more dramatic is the change among men. Whereas 

African American and white men have statistically indistinguishable obesity rates when 

one uses BMI, when one defines obesity using PBF the difference is statistically 

significant with white men having an obesity rate that is 16.26 percentage points higher 

than that of African American men.  In summary, the use of a more accurate measure of 

fatness generates obesity rates that challenge the conventional wisdom about who is 

obese and why.   

 

Fatness and Early Receipt of OA Benefits 

Table 6 contains the results of our probit regressions, in which the dependent 

variable is an indicator variable for whether the respondent started receiving OA benefits 

at age 62.  It lists results for six regressions, one for each of our measures of fatness or 

obesity: body mass index, weight in kg controlling for height in cm, total body fat and fat 

free mass (both in kg), percent body fat, an indicator for obesity as defined by BMI, and 

an indicator for obesity as defined by PBF.  Table 6 indicates that the correlation between 

each measure of fatness is statistically significant and positive; i.e. fatness is consistently 

associated with a higher probability of taking OA benefits at age 62.  Moreover, the 
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correlation is large.  Column 1 indicates that a one-unit increase in BMI is associated 

with a 1.7 percentage point higher probability of taking OA benefits at age 62.  A unit of 

BMI is hard to grasp, as it varies with one’s height, so it may be clearer to point out that a 

one standard deviation increase in BMI (4.3 units) is associated with a 7.3 percentage 

point higher probability of taking OA benefits at age 62.  When weight in kg is the 

measure of fatness used, the results are similar.  An increase in weight of 14.3 kilograms 

(one standard deviation) is associated with a 7.2 percentage point increase in the 

probability of taking OA benefits at age 62. 

We next present results for measures of fatness that are based on body 

composition.  In column 3, the results indicate that an extra kilogram of body fat is 

associated with a 2.8 percentage point higher probability of taking OA benefits at age 62.  

An extra standard deviation of total body fat is associated with a 19.3 percentage point 

higher probability of early receipt of OA benefits.  Fat free mass is negative in sign but 

not statistically significant.  These findings confirm that body composition is important to 

consider.  While the BMI and weight in kg results imply that all body mass increases the 

probability of early OA receipt, the model that uses TBF and FFM indicates that it is only 

body fat, not fat-free mass like muscle, that predicts early receipt of OA.   

Another measure of body composition is percent body fat (PBF). We find that an 

extra percentage point of one’s body mass that is fat is associated with a two percentage 

point higher probability of taking OA benefits at age 62.  A PBF that is one standard 

deviation from the mean is associated with a 7.6 percentage point higher probability of 

taking early benefits. 

Finally, we present results for obesity.  First, we use the most common measure of 

obesity, one based on BMI.  Column 5 shows that this measure of obesity is associated 

with a whopping 25.8 percentage point higher probability of taking OA benefits at age 

62.  To put this in context, 45.6 percent of our sample took OA benefits at age 62.  When 

we use the measure of obesity based on PBF, obesity is associated with a 11.7 percentage 

point increase in the probability of that outcome.  (The magnitude of PBF-based obesity 

is lower than that for BMI-based obesity because PBF-based obesity has a lower 

threshold; that is, more people are classified as obese when one uses PBF so not 

surprisingly the correlation of PBF-based obesity with outcomes is less extreme.)   
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All of these results control for the strictly exogenous factors race and year in 

which the respondent turned age 62.  When we add additional regressors that may also be 

affected by fatness and obesity (in particular, education, age of wife, and marital status), 

the results are very similar with the exception that the coefficient on PBF-based obesity 

goes from being just barely significant to not statistically significant (see Table 7). 

These correlations are potentially unsatisfying because they may not accurately 

reflect the causal impact of fatness or obesity on early receipt of OA benefits.  For 

example, there may be unobserved health differences between the obese and non-obese 

that leads to early receipt.  To test this, we instrument for the fatness or obesity of the 

respondent using the same fatness or obesity measure for the respondent’s adult 

biological child.  Table 8 presents the IV probit results.  There are two important 

conclusions.  First, the IV procedure has considerably raised the standard errors, so no 

coefficients are statistically significant.  More importantly, the Wald tests of exogeneity 

(test statistics not shown) indicate that we cannot reject the hypothesis that fatness and 

obesity are exogenous.  The results of this test are important because they indicate that 

the benefit of the IV procedure (greater efficiency) is not worth the cost (higher standard 

errors); in other words, it indicates that our probit results are to be preferred to our probit 

IV results. 

Conclusions 

In this paper we have used more objective measures of health to model early 

receipt of OA benefits in a manner that addresses each of the three objections outlined by 

Bound et al. (2006).  We find that fatness and obesity are strong predictors of early 

receipt of OA benefits.  This is true even though two aspects of our PSID data work 

against finding a significant correlation: first, we use a measure of fatness or obesity from 

1986, years before the respondents actually begin to receive OA benefits; and second, our 

measure of early receipt has an unknown degree of measurement error due to inaccuracy 

in our algorithm for imputing whether the head began receiving OA benefits at age 62; 

and third, we are working with a relatively small sample (N=233) although the 

magnitudes of the correlation are so large that our limited power was not an issue.  Our 

results indicate that we cannot reject that fatness or obesity is exogenous, implying that 
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we can cautiously interpret the probit marginal effects as estimates of the causal impact 

of fatness and obesity on early receipt of Social Security.   

Our results also confirm that the measure of fatness one uses can affect research 

findings; for example, we find that only body fat, not fat-free mass is associated with 

early OA receipt, although if one used BMI or weight in kg one might be led to believe 

that more body mass is always associated with early OA receipt.  Moreover, we find that 

obesity defined using BMI is associated with a higher probability of early OA receipt 

than is obesity defined using percent body fat; the reason is that fewer people are 

classified as obese by BMI and so it is a more extreme form of obesity, more strongly 

correlated with early OA receipt. 

 Our findings have important implications for those who believe that recent 

changes in OA benefit payout rules (that will eventually raise the normal retirement age 

to 67 and decrease the actuarial value of first taking OA benefits at age 62) will lead to a 

smaller percentage of future old-age cohorts taking OA benefits at age 62.  While these 

policy changes are likely to have the expected marginal impact on behavior, that impact 

may be overwhelmed by the potential marginal impact of increased obesity in future old-

age cohorts on early OA receipt.  The magnitude of our results suggest that the upward 

trend in obesity in the U.S. could actually result in a higher percentage of future old-age 

cohorts taking OA benefits at age 62 despite the reduced protection such benefits will 

provide. 
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Table 1 

False Positives and False Negatives  
When Use BMI to Define Obesity, by Gender 

 
 % Positives False % Negatives False 

Females 
 

0.17 62.85 

Males 16.45 28.66 
Notes:  

1) Data: NHANES III 
2) Uses NIH-recommended cutoffs of PBF for obesity: 25% for men, 30% for women. 

 
 
 

Table 2 
Prevalence of Obesity Measured by BMI and PBF, by Gender 

 
 Percent Obese  

Defined Using BMI 
Percent Obese  

Defined Using PBF 
Females 23.3 70.1 
Males 18.9 43.3 

Note: Data: NHANES III 
 
 

Table 3 
False Positives and False Negatives  

When Use BMI to Define Obesity, by Gender 
 

 % Positives False % Negatives False 

Females 
 

27.74 5.42 

Males 44.79 9.31 
Notes:  

1) Data: NHANES III 
2) Controls for the threshold effect by using cutoffs of PBF for obesity that result in approximately 

the same rates of obesity as does the BMI cutoff for obesity (BMI>=30), which are: 29% body fat 
for men and 41% for women.  
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Table 4 
Testing for Differences in Mean PBF, TBF, FFM by Race and Gender 

 
 FFM (kg) TBF (kg) PBF (%) 
African American Females 47.59 27.95 35.27 
White Females 44.03 24.79 34.48 

Black-White Difference 3.56*** 3.16*** 0.79 
    
African American Males 64.01 18.28 21.19 
White Males 62.68 20.61 24.04 

Black-White Difference 1.33*** -2.33*** -2.85*** 
Note:  
1) Data: NHANES III 
2) Asterisks indicate level of statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 
 
 
 
 

Table 5 
Prevalence of Obesity Measured by BMI and PBF, by Race and Gender 

 
 Percent Obese  

Defined Using BMI 
Percent Obese  

Defined Using PBF 
African American Females 33.11 74.56 
White Females 21.71 69.33 

Black-White Difference 11.40*** 5.23*** 
  

African American Males 19.39 29.00 
White Males 18.83 45.26 

Black-White Difference 0.56 -16.26*** 
Notes:  

1) Data: NHANES III 
2) BMI based on measured weight and height.  PBF calculated using TBF and FFM generated from 

BIA readings. 
3) Asterisks indicate level of statistical significance: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6: 
Probit Regressions 

Early Receipt of OA Benefits on Measures of Fatness 
 

 (1) (2) (3) (4) (5) (6) 
       
Body Mass Index 0.04279*      
 (1.72) 

ME=.017 
     

Weight in kg  0.01369*     
  (1.81) 

ME=.005 
    

Height in cm  -0.02206     
  (-1.46) 

ME= -.009 
    

Total Body Fat (kg)   0.06995*    
   (1.78) 

ME=.028 
   

Fat Free Mass (kg)   -0.04049    
   (-1.32) 

ME= -.016 
   

Percent Body Fat    0.05016**   
    (1.98) 

ME=.020 
  

Obese (defined by BMI)     0.66158**  
     (2.39) 

ME=.258 
 

Obese (defined by PBF)      0.29701* 
      (1.65) 

ME=.117 
Constant -65.35452 -64.31430 -80.46653* -72.82526 -56.18868 -69.71423 
 (-1.42) (-1.41) (-1.68) (-1.59) (-1.21) (-1.53) 
Observations 233 233 233 233 233 233 



 32

Notes:  
1) t statistics in parentheses 
2) Marginal effects listed below t statistics 
3) Statistical significance indicated with asterisks:  *** p<0.01, ** p<0.05, * p<0.1 
4) Other regressors include: the year respondent turned age 62, indicator for African-American. 
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Table 7: 
Probit Regressions 

Early Receipt of OA Benefits on Measures of Fatness 
With Broader Set of Regressors  

 (1) (2) (3) (4) (5) (6) 
       
Body Mass Index 0.04979**      
 (1.99) 

ME= .020 
     

Weight in kg  0.01603**     
  (2.08) 

ME=.006 
    

Height in cm  -0.02783*     
  (-1.82) 

ME= -.011 
    

Total Body Fat (kg)   0.08456**    
   (2.13) 

ME=.033 
   

Fat Free Mass (kg)   -0.05028    
   (-1.62) 

ME= -.020 
   

Percent Body Fat    0.06065**   
    (2.36) 

ME=.024 
  

Obese (defined by BMI)     0.63773**  
     (2.29) 

ME= .250 
 

Obese (defined by PBF)      0.30208 
      (1.62) 

ME=.119 
Constant -68.87333 -67.90309 -87.82960* -78.07218* -58.88961 -72.74588 
 (-1.49) (-1.48) (-1.82) (-1.70) (-1.27) (-1.58) 
Observations 231 231 231 231 231 231 



 34

Notes:  
1) t statistics in parentheses 
2) Marginal effects listed below t statistics 
3) Statistical significance indicated with asterisks:  *** p<0.01, ** p<0.05, * p<0.1 
4) Other regressors include: the year respondent turned age 62, highest grade completed, age of wife when head turned age 62, 

and indicator variables for African-American and marital status. 
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Table 8: 
IV Probit Regressions 

Early Receipt of OA Benefits on Measures of Fatness 
 

 (1) (2) (3) (4) (5) (6) 
       
Body Mass Index 0.01174      
 (0.13) 

ME=.005 
     

Weight in kg  0.00524     
  (0.21) 

ME=.002 
    

Height in cm  -0.01794     
  (-0.38) 

ME= -.007 
    

Total Body Fat (kg)       
       
Fat Free Mass (kg)       
       
Percent Body Fat    0.03541   
    (0.39) 

ME=.014 
  

Obese (defined by BMI)     -0.56396  
     (-0.24) 

ME= -.209 
 

Obese (defined by PBF)      0.72244 
      (0.45) 

ME=.279 
Constant -64.51373 -65.35432  -70.64022 -67.48748 -74.74769 
 (-1.42) (-1.44)  (-1.49) (-1.49) (-1.60) 
Observations 233 233  233 233 233 

Notes:  
1) t statistics in parentheses 
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2) Marginal effects listed below t statistics 
3) Statistical significance indicated with asterisks:  *** p<0.01, ** p<0.05, * p<0.1 
4) Other regressors include: the year respondent turned age 62, indicator for African-American. 
5) Instrument is the same measure of fatness for the respondent’s adult biological child, controlling for the adult child’s age and 

gender. 
6) The probit IV model in which TBF and FFM were the measures of fatness failed to converge, so column 3 is left blank. 
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Appendix Table 1: 

PSID Summary Statistics  
 
 

Variable Observations Mean Std. Dev. Min Max 
Body Mass Index 233 26.50 4.34 15.78 46.59 
Weight in kg 233 83.81 14.26 50 154.55 
Height in cm 233 177.70 7.14 154.94 200.66 
Total Body Fat 233 21.12 6.91 3.50 56.81 
Fat-Free Mass 233 62.42 8.24 43.81 101.43 
Percent Body Fat 233 24.72 3.84 6.79 35.98 
Obesity defined by PBF 233 .46 .50 0 1 
Obese defined by BMI 233 .16 .37 0 1 
Black 233 .16 .37 0 1 
Year Turned 62 233 1992.22 3.95 1987 2002 
Married 233 .94 .23 0 1 
Years of Education 231 12.32 3.37 2 17 
Age 233 55.61 14.14 0 76 
Child BMI 233 24.31 3.67 16.82 43.26 
Child Weight in kg 233 164.15 31.87 90 260 
Child Height in cm 233 68.72 4.05 51 77 
Child Total Body Fat (kg) 233 18.58 6.40 7.14 52.42 
Child Fat-Free Mass (kg) 233 55.97 10.88 33.22 83.00 
Child Percent Body Fat 233 24.75 5.98 12.10 46.65 
Child Obese defined by BMI 233 .086 .28 0 1 
Child Obese defined by PBF 233 .28 .45 0 1 
Child Age 233 29 4.11 20 39 
Child is Male 233 .71 .45 0 1 

 




